These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23596942)

  • 21. In situ oil/water separation using hydrophobic-oleophilic fibrous wall: a lab-scale feasibility study for groundwater cleanup.
    Lim TT; Huang X
    J Hazard Mater; 2006 Sep; 137(2):820-6. PubMed ID: 16621264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemically treated
    Jmaa SB; Kallel A
    Heliyon; 2024 Apr; 10(7):e28427. PubMed ID: 38560221
    [No Abstract]   [Full Text] [Related]  

  • 23. Kapok fiber-supported liquid extraction for convenient oil samples preparations: A feasibility and proof-of-concept study.
    Chen D; Wang B; Xu XL; Zhang MY; Bu XM; Yang S; Luo Y; Xu X
    J Chromatogr A; 2022 Oct; 1681():463480. PubMed ID: 36095972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing oil-sorption performance of polypropylene fiber by surface modification via UV-induced graft polymerization of butyl acrylate.
    Li S; Wei J; Wang A; Nie Y; Yang H; Wang L; Zhou B
    Water Sci Technol; 2012; 66(12):2647-52. PubMed ID: 23109581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.
    Keshavarz A; Zilouei H; Abdolmaleki A; Asadinezhad A
    J Environ Manage; 2015 Jul; 157():279-86. PubMed ID: 25917559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions.
    Rao MM; Rao GP; Seshaiah K; Choudary NV; Wang MC
    Waste Manag; 2008; 28(5):849-58. PubMed ID: 17416512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aqueous Antibacterial Enhancement Using Kapok Fibers Chemically Modified in 3-D Crosslinked Structure.
    Wang R; Shin CH; Chang Y; Kim D; Park JS
    Water Environ Res; 2016 Jul; 88(7):611-6. PubMed ID: 27329057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water.
    Dong T; Cao S; Xu G
    J Hazard Mater; 2016 Mar; 305():1-7. PubMed ID: 26642440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method.
    Elanchezhiyan SS; Sivasurian N; Meenakshi S
    Carbohydr Polym; 2016 Jul; 145():103-13. PubMed ID: 27106157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biobased Kapok Fiber Nano-Structure for Energy and Environment Application: A Critical Review.
    Zerga AY; Tahir M
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of crude and engine oils from water using raw rice husk.
    Razavi Z; Mirghaffari N; Rezaei B
    Water Sci Technol; 2014; 69(5):947-52. PubMed ID: 24622541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.
    Subbaiah MV; Kim DS
    Ecotoxicol Environ Saf; 2016 Jun; 128():109-17. PubMed ID: 26921544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface.
    Lin J; Tian F; Shang Y; Wang F; Ding B; Yu J; Guo Z
    Nanoscale; 2013 Apr; 5(7):2745-55. PubMed ID: 23426405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw.
    Ibrahim S; Ang HM; Wang S
    Bioresour Technol; 2009 Dec; 100(23):5744-9. PubMed ID: 19625183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of modified rice husks by biological delignification and acetylation for oil spill cleanup.
    Wang Z; Saleem J; Barford JP; McKay G
    Environ Technol; 2020 Jun; 41(15):1980-1991. PubMed ID: 30516089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution.
    Chai W; Liu X; Zou J; Zhang X; Li B; Yin T
    Carbohydr Polym; 2015 Nov; 132():245-51. PubMed ID: 26256347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.
    Wu MN; Maity JP; Bundschuh J; Li CF; Lee CR; Hsu CM; Lee WC; Huang CH; Chen CY
    Water Res; 2017 Oct; 123():332-344. PubMed ID: 28683374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite.
    Zhao P; Zhang R; Wang J
    Water Sci Technol; 2017 Apr; 75(7-8):1633-1642. PubMed ID: 28402304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoporous polystyrene fibers for oil spill cleanup.
    Lin J; Shang Y; Ding B; Yang J; Yu J; Al-Deyab SS
    Mar Pollut Bull; 2012 Feb; 64(2):347-52. PubMed ID: 22136762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.