BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 23596950)

  • 1. Purifying surface water contaminated with azo dyes using nanofiltration: Interactions between dyes and dissolved organic matter.
    Jawaduddin M; Su Z; Siddique MS; Rashid S; Yu W
    Chemosphere; 2024 Aug; 361():142438. PubMed ID: 38797203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions.
    Giacobbo A; Pasqualotto IF; Machado Filho RCC; Minhalma M; Bernardes AM; Pinho MN
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter.
    Cai YH; Gopalakrishnan A; Dong Q; Schäfer AI
    Water Res; 2024 Apr; 253():121241. PubMed ID: 38377922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Flux and Rejection Coefficients in the Removal of Emerging Pollutants Using a Nanofiltration Membrane.
    Hidalgo AM; Gómez M; Murcia MD; Gómez E; León G; Alfaro I
    Membranes (Basel); 2023 Nov; 13(11):. PubMed ID: 37999354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropollutant rejection by nanofiltration membranes: A mini review dedicated to the critical factors and modelling prediction.
    Xu R; Zhang Z; Deng C; Nie C; Wang L; Shi W; Lyu T; Yang Q
    Environ Res; 2024 Mar; 244():117935. PubMed ID: 38103781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Nanofiltration Process Using DSPM-DE Model for Purification of Amine Solution.
    Ghorbani A; Bayati B; Drioli E; Macedonio F; Kikhavani T; Frappa M
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33805230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design.
    Liu X; Zhang L; Cui X; Zhang Q; Hu W; Du J; Zeng H; Xu Q
    Adv Sci (Weinh); 2021 Dec; 8(23):e2102493. PubMed ID: 34668340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Membrane Integrity Monitoring Methods for Hollow Fiber Nanofiltration Membranes: Applicability in Gray Water Reclamation Systems.
    Rutten SB; Ojobe BL; Hernández Leal L; de Grooth J; Roesink HDW; Bartacek J; Schmitt H
    ACS ES T Water; 2023 Dec; 3(12):3884-3892. PubMed ID: 38094919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of NF Polymeric Membranes for Removal of Multicomponent Heat-Stable Salts (HSS) Ions from Methyl Diethanolamine (MDEA) Solutions.
    Ghorbani A; Bayati B; Poerio T; Argurio P; Kikhavani T; Namdari M; Ferreira LM
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives.
    Siddique TA; Dutta NK; Roy Choudhury N
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32640523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water reclamation during drinking water treatments using polyamide nanofiltration membranes on a pilot scale.
    Kukučka M; Kukučka N; Habuda-Stanić M
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17919-27. PubMed ID: 27255312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of operating parameters on the arsenic removal by nanofiltration.
    Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E
    Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of transmembrane pressure and feed concentration on the retention of arsenic, chromium and cadmium from water by nanofiltration.
    Babaee Y; Mousavi SM; Danesh S; Baratian A
    J Environ Sci Eng; 2010 Jan; 52(1):1-6. PubMed ID: 21114097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of pressure-driven membrane technologies for the removal of arsenic from drinking water].
    Li X; Hu B; Gu P
    Wei Sheng Yan Jiu; 2007 May; 36(3):395-8. PubMed ID: 17712970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of arsenic as a potentially toxic element from drinking water by filtration: A mini review of nanofiltration and reverse osmosis techniques.
    Pezeshki H; Hashemi M; Rajabi S
    Heliyon; 2023 Mar; 9(3):e14246. PubMed ID: 36938422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures.
    Yu Y; Zhao C; Wang Y; Fan W; Luan Z
    J Environ Sci (China); 2013 Feb; 25(2):302-7. PubMed ID: 23596950
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.