These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23596954)

  • 41. The use of rice hulls for sustainable control of NOx emissions in deep space missions.
    Xu XH; Shi Y; Kwak D; Chang SG; Fisher JW; Pisharody S; Moran MJ; Wignarajah K
    Ind Eng Chem Res; 2003 Apr; 42(8):1813-20. PubMed ID: 14672085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions.
    Chao CY; Kwong PC; Wang JH; Cheung CW; Kendall G
    Bioresour Technol; 2008 Jan; 99(1):83-93. PubMed ID: 17257831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.
    Xie JJ; Yang XM; Zhang L; Ding TL; Song WL; Lin WG
    J Environ Sci (China); 2007; 19(1):109-16. PubMed ID: 17913163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor.
    Han J; Kim H; Minami W; Shimizu T; Wang G
    Bioresour Technol; 2008 Jun; 99(9):3782-6. PubMed ID: 17869096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.
    Wang T; Chen T; Lin X; Zhan M; Li X
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5607-5618. PubMed ID: 28035608
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low SO2 emission from CFB co-firing MSW and bituminous.
    Lu QG; Li ZW; Na YJ; Ba SL; Sun YK; He J
    J Environ Sci (China); 2004; 16(5):821-4. PubMed ID: 15559820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental study on combustion characteristics of municipal solid waste.
    Jiang F; Liu S; Wang HG; Pan ZG
    J Environ Sci (China); 2003 Jul; 15(4):482-6. PubMed ID: 12974308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduced Pollutant Emissions and Slagging Rate of Biomass Pellet Combustion by Optimizing the Multilayer Distribution of Secondary Air.
    He Z; Liu S; Wang S; Liu W; Li Y; Feng X
    ACS Omega; 2022 Aug; 7(33):28962-28973. PubMed ID: 36033702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polycyclic aromatic hydrocarbon (PAH) emission from co-firing municipal solid waste (MSW) and coal in a fluidized bed incinerator.
    You X
    Waste Manag; 2008; 28(9):1543-51. PubMed ID: 17996438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-firing of eucalyptus bark and rubberwood sawdust in a swirling fluidized-bed combustor using an axial flow swirler.
    Chakritthakul S; Kuprianov VI
    Bioresour Technol; 2011 Sep; 102(17):8268-78. PubMed ID: 21729824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of bed material size distribution, operating conditions and agglomeration phenomenon on heavy metal emission in fluidized bed combustion process.
    Liu ZS; Peng TH; Lin CL
    Waste Manag; 2012 Mar; 32(3):417-25. PubMed ID: 22119049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions.
    Liang Z; Ma X
    Waste Manag; 2010 Dec; 30(12):2520-9. PubMed ID: 20627508
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.
    Bahillo A; Armesto L; Cabanillas A; Otero J
    Waste Manag; 2004; 24(9):935-44. PubMed ID: 15504671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of post-combustion ultra-low NO
    Xiao Y; Song G; Yang Z; Yang X; Wang C; Ji Z; Lyu Q; Zhang X
    Waste Manag; 2022 Jan; 137():72-80. PubMed ID: 34749179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of PCDD/Fs and dl-PCBs emission from combustion of PCB-containing oil in a fluidized-bed incinerator.
    Trinh MM; Kuo CH; Chang MB
    Chemosphere; 2019 Jun; 225():35-42. PubMed ID: 30856473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reaction behavior of SO2 in the sintering process with flue gas recirculation.
    Yu ZY; Fan XH; Gan M; Chen XL; Chen Q; Huang YS
    J Air Waste Manag Assoc; 2016 Jul; 66(7):687-97. PubMed ID: 27043363
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combustion characteristics of simulated gas fuel in a 30 kg/h scale pyrolysis-melting incinerator.
    Shin D; Yu T; Yang W; Jeon B; Park S; Hwang J
    Waste Manag; 2008 Nov; 28(11):2422-7. PubMed ID: 18325753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Incineration experiment of medical waste of novel coronavirus pneumonia (COVID-19) in a mobile animal carcass incinerator.
    Zhang S; Zhang Y; Wang F; Kang D; Wang J; Wang M; Zhang C; Wang Y; Liu H; Zhou B; Wu Y
    Waste Dispos Sustain Energy; 2021; 3(2):177-183. PubMed ID: 33688621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combustion behaviour of Olive pruning/animal manure blends in a fluidized bed combustor.
    Vamvuka D; Alloimonos N
    Heliyon; 2017 Sep; 3(9):e00385. PubMed ID: 28948236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.