These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 235970)

  • 1. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization.
    Grinvald A; Schlessinger J; Pecht I; Steinberg IZ
    Biochemistry; 1975 May; 14(9):1921-29. PubMed ID: 235970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH dependence study on the unfolding and refolding of apoazurin: comparison with Zn(II) azurin.
    Hansen JE; McBrayer MK; Robbins M; Suh Y
    Cell Biochem Biophys; 2002; 36(1):19-40. PubMed ID: 11939370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of a pH-dependent conformational change in azurin by time-resolved phosphorescence.
    Hansen JE; Steel DG; Gafni A
    Biophys J; 1996 Oct; 71(4):2138-43. PubMed ID: 8889189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study.
    Szabo AG; Stepanik TM; Wayner DM; Young NM
    Biophys J; 1983 Mar; 41(3):233-44. PubMed ID: 6404322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of metalloazurins.
    Hansen JE; Longworth JW; Fleming GR
    Biochemistry; 1990 Aug; 29(31):7329-38. PubMed ID: 2119804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confirmation that multiexponential fluorescence decay behavior of holoazurin originates from conformational heterogeneity.
    Hutnik CM; Szabo AG
    Biochemistry; 1989 May; 28(9):3923-34. PubMed ID: 2502172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for multiexponential tryptophan fluorescence intensity decay in proteins.
    Bajzer Z; Prendergast FG
    Biophys J; 1993 Dec; 65(6):2313-23. PubMed ID: 8312471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine emission in the tryptophanless azurin from Pseudomonas fluorescens.
    Ugurbil K; Bersohn R
    Biochemistry; 1977 Mar; 16(5):895-901. PubMed ID: 402931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility.
    Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ
    Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the metal ion on the folding energetics of azurin: a comparison of the native, zinc and apoprotein.
    Leckner J; Bonander N; Wittung-Stafshede P; Malmström BG; Karlsson BG
    Biochim Biophys Acta; 1997 Sep; 1342(1):19-27. PubMed ID: 9366266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin.
    Bernini C; Andruniów T; Olivucci M; Pogni R; Basosi R; Sinicropi A
    J Am Chem Soc; 2013 Mar; 135(12):4822-33. PubMed ID: 23458492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fluorescence decay of tryptophan residues in native and denatured proteins.
    Grinvald A; Steinberg IZ
    Biochim Biophys Acta; 1976 Apr; 427(2):663-78. PubMed ID: 5134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy.
    Mei G; Gilardi G; Venanzi M; Rosato N; Canters GW; Agró AF
    Protein Sci; 1996 Nov; 5(11):2248-54. PubMed ID: 8931143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins.
    Petrich JW; Longworth JW; Fleming GR
    Biochemistry; 1987 May; 26(10):2711-22. PubMed ID: 3111523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Triplet State and Protein Dynamics in the Formation and Stability of the Tryptophan Radical in an Apoazurin Mutant.
    López-Peña I; Lee CT; Rivera JJ; Kim JE
    J Phys Chem B; 2022 Sep; 126(36):6751-6761. PubMed ID: 35977067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fine structure of luminescence spectra of azurin.
    Burstein EA; Permyakov EA; Yashin VA; Burkhanov SA; Finazzi Agro A
    Biochim Biophys Acta; 1977 Mar; 491(1):155-9. PubMed ID: 402948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The environment of the tryptophan residue in Pseudomonas aeruginosa azurin and its fluorescence properties.
    Turoverov KK; Kuznetsova IM; Zaitsev VN
    Biophys Chem; 1985 Nov; 23(1-2):79-89. PubMed ID: 3937558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A time-resolved fluorescence study of azurin and metalloazurin derivatives.
    Hutnik CM; Szabo AG
    Biochemistry; 1989 May; 28(9):3935-9. PubMed ID: 2502173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the triplet state properties of tyrosines and tryptophan in azuring using optically detected magnetic resonance.
    Ugurbil K; Maki AH; Bersohn R
    Biochemistry; 1977 Mar; 16(5):901-7. PubMed ID: 402932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-resolved spectral measurements with several two tryptophan containing proteins.
    Eftink MR; Wasylewski Z; Ghiron CA
    Biochemistry; 1987 Dec; 26(25):8338-46. PubMed ID: 3442660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.