These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23597062)

  • 1. Direct modulation of lanthanide emission at sub-lifetime scales.
    Karaveli S; Weinstein AJ; Zia R
    Nano Lett; 2013 May; 13(5):2264-9. PubMed ID: 23597062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Combined Electromagnetic Local Density of Optical States with Quantum Emitters Supporting Strong Electric and Magnetic Transitions.
    Li D; Karaveli S; Cueff S; Li W; Zia R
    Phys Rev Lett; 2018 Nov; 121(22):227403. PubMed ID: 30547646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Europium-Doped NaYF
    Rabouw FT; Prins PT; Norris DJ
    Nano Lett; 2016 Nov; 16(11):7254-7260. PubMed ID: 27786490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vectorial probing of electric and magnetic transitions in variable optical environments and vice-versa.
    Chacon R; Leray A; Kim J; Lahlil K; Bouhelier A; Kim JW; Gacoin T; Colas des Francs G
    Nanotechnology; 2022 Jul; 33(38):. PubMed ID: 35700697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral tuning by selective enhancement of electric and magnetic dipole emission.
    Karaveli S; Zia R
    Phys Rev Lett; 2011 May; 106(19):193004. PubMed ID: 21668150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic control of light emission faster than the lifetime limit using VO2 phase-change.
    Cueff S; Li D; Zhou Y; Wong FJ; Kurvits JA; Ramanathan S; Zia R
    Nat Commun; 2015 Oct; 6():8636. PubMed ID: 26489436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities.
    Ernandes C; Lin HJ; Mortier M; Gredin P; Mivelle M; Aigouy L
    Nano Lett; 2018 Aug; 18(8):5098-5103. PubMed ID: 30001486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas.
    Sanz-Paz M; Ernandes C; Esparza JU; Burr GW; van Hulst NF; Maitre A; Aigouy L; Gacoin T; Bonod N; Garcia-Parajo MF; Bidault S; Mivelle M
    Nano Lett; 2018 Jun; 18(6):3481-3487. PubMed ID: 29701991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of light emission of quantum emitters coupled to silicon nanoantenna using cylindrical vector beams.
    Montagnac M; Brûlé Y; Cuche A; Poumirol JM; Weber SJ; Müller J; Larrieu G; Larrey V; Fournel F; Boisron O; Masenelli B; Colas des Francs G; Agez G; Paillard V
    Light Sci Appl; 2023 Sep; 12(1):239. PubMed ID: 37726280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions.
    Choi B; Iwanaga M; Sugimoto Y; Sakoda K; Miyazaki HT
    Nano Lett; 2016 Aug; 16(8):5191-6. PubMed ID: 27436631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous emission control in a tunable hybrid photonic system.
    Frimmer M; Koenderink AF
    Phys Rev Lett; 2013 May; 110(21):217405. PubMed ID: 23745934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong enhancement of magnetic dipole emission in a multilevel electronic system.
    Karaveli S; Zia R
    Opt Lett; 2010 Oct; 35(20):3318-20. PubMed ID: 20967052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying local density of optical states of nanorods by fluorescence lifetime imaging.
    Liu J; Jiang X; Ishii S; Shalaev V; Irudayaraj J
    New J Phys; 2014 Jun; 16():063069. PubMed ID: 25408619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient sensitization of europium, ytterbium, and neodymium functionalized tris-dipicolinate lanthanide complexes through tunable charge-transfer excited states.
    D'Aléo A; Picot A; Beeby A; Gareth Williams JA; Le Guennic B; Andraud C; Maury O
    Inorg Chem; 2008 Nov; 47(22):10258-68. PubMed ID: 18937447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity.
    Thyrrestrup H; Hartsuiker A; Gérard JM; Vos WL
    Opt Express; 2013 Oct; 21(20):23130-44. PubMed ID: 24104228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure.
    Lu YJ; Sokhoyan R; Cheng WH; Kafaie Shirmanesh G; Davoyan AR; Pala RA; Thyagarajan K; Atwater HA
    Nat Commun; 2017 Nov; 8(1):1631. PubMed ID: 29158507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Measurement of the Local Density of Optical States in the Time Domain.
    Ter Huurne SET; Peeters DBL; Sánchez-Gil JA; Rivas JG
    ACS Photonics; 2023 Aug; 10(8):2980-2986. PubMed ID: 37602289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO
    van Hest JJHA; Blab GA; Gerritsen HC; de Mello Donega C; Meijerink A
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(35):19373-19382. PubMed ID: 28919934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile photonic crystals.
    Liu JF; Jiang HX; Gan ZS; Jia BH; Jin CJ; Wang XH; Gu M
    Opt Express; 2011 Jun; 19(12):11623-30. PubMed ID: 21716395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO.
    Karaveli S; Wang S; Xiao G; Zia R
    ACS Nano; 2013 Aug; 7(8):7165-72. PubMed ID: 23879390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.