These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23597185)

  • 1. Can we model snow photochemistry? Problems with the current approaches.
    Domine F; Bock J; Voisin D; Donaldson DJ
    J Phys Chem A; 2013 Jun; 117(23):4733-49. PubMed ID: 23597185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impurities in snowpacks.
    Sommerfeld RA
    Environ Monit Assess; 1989 Apr; 12(1):66. PubMed ID: 24249066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide.
    Chu L; Anastasio C
    J Phys Chem A; 2005 Jul; 109(28):6264-71. PubMed ID: 16833967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of selected organic and inorganic snow and cloud components on the photochemical generation of nitrite by nitrate irradiation.
    Minero C; Maurino V; Bono F; Pelizzetti E; Marinoni A; Mailhot G; Carlotti ME; Vione D
    Chemosphere; 2007 Aug; 68(11):2111-7. PubMed ID: 17382370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-snow interactions and atmospheric chemistry.
    Dominé F; Shepson PB
    Science; 2002 Aug; 297(5586):1506-10. PubMed ID: 12202818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.
    Berhanu TA; Meusinger C; Erbland J; Jost R; Bhattacharya SK; Johnson MS; Savarino J
    J Chem Phys; 2014 Jun; 140(24):244306. PubMed ID: 24985637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of small organic molecules on snow grains: the applicability of artificial snow for environmental studies.
    Kurková R; Ray D; Nachtigallová D; Klán P
    Environ Sci Technol; 2011 Apr; 45(8):3430-6. PubMed ID: 21366308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the elution of organic chemicals from a melting homogeneous snow pack.
    Meyer T; Wania F
    Water Res; 2011 Jun; 45(12):3627-37. PubMed ID: 21565383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate Concentration near the Surface of Frozen Aqueous Solutions.
    Marrocco HA; Michelsen RR
    J Phys Chem B; 2014 Dec; 118(51):14929-41. PubMed ID: 25495473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a mechanism for nitrate photochemistry in snow.
    Bock J; Jacobi HW
    J Phys Chem A; 2010 Feb; 114(4):1790-6. PubMed ID: 20058930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of ice and snow.
    Warren SG
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180161. PubMed ID: 30982450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry.
    Meusinger C; Berhanu TA; Erbland J; Savarino J; Johnson MS
    J Chem Phys; 2014 Jun; 140(24):244305. PubMed ID: 24985636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere.
    Amoroso A; Domine F; Esposito G; Morin S; Savarino J; Nardino M; Montagnoli M; Bonneville JM; Clement JC; Ianniello A; Beine HJ
    Environ Sci Technol; 2010 Jan; 44(2):714-9. PubMed ID: 20000750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters.
    Grenfell TC; Doherty SJ; Clarke AD; Warren SG
    Appl Opt; 2011 May; 50(14):2037-48. PubMed ID: 21556105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window.
    Hori M; Aoki T; Tanikawa T; Hachikubo A; Sugiura K; Kuchiki K; Niwano M
    Appl Opt; 2013 Oct; 52(30):7243-55. PubMed ID: 24216578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of organochlorines cycling in the cryosphere on global distributions and fate--2. Land ice and temporary snow cover.
    Hofmann L; Stemmler I; Lammel G
    Environ Pollut; 2012 Mar; 162():482-8. PubMed ID: 22054697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzene photolysis on ice: implications for the fate of organic contaminants in the winter.
    Kahan TF; Donaldson DJ
    Environ Sci Technol; 2010 May; 44(10):3819-24. PubMed ID: 20423076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.
    Walker RL; Searles K; Willard JA; Michelsen RR
    J Chem Phys; 2013 Dec; 139(24):244703. PubMed ID: 24387384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic contaminant amplification during snowmelt.
    Meyer T; Wania F
    Water Res; 2008 Apr; 42(8-9):1847-65. PubMed ID: 18222526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport and modification of humic substances present in Antarctic snow and ancient ice.
    Calace N; Cantafora E; Mirante S; Petronio BM; Pietroletti M
    J Environ Monit; 2005 Dec; 7(12):1320-5. PubMed ID: 16307090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.