BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23597401)

  • 1. HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation.
    Stripp ST; Soboh B; Lindenstrauss U; Braussemann M; Herzberg M; Nies DH; Sawers RG; Heberle J
    Biochemistry; 2013 May; 52(19):3289-96. PubMed ID: 23597401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN- ligands.
    Soboh B; Stripp ST; Muhr E; Granich C; Braussemann M; Herzberg M; Heberle J; Gary Sawers R
    FEBS Lett; 2012 Nov; 586(21):3882-7. PubMed ID: 23022438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)
    Arlt C; Nutschan K; Haase A; Ihling C; Tänzler D; Sinz A; Sawers RG
    Sci Rep; 2021 Dec; 11(1):24362. PubMed ID: 34934150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases.
    Blokesch M; Albracht SP; Matzanke BF; Drapal NM; Jacobi A; Böck A
    J Mol Biol; 2004 Nov; 344(1):155-67. PubMed ID: 15504408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study of the Fe(CN)2CO cofactor and its binding to HypC protein.
    Albareda M; Palacios JM; Imperial J; Pacios LF
    J Phys Chem B; 2013 Oct; 117(43):13523-33. PubMed ID: 24094065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of oxygen on [NiFe]-hydrogenase cofactor biosynthesis and how ligation of carbon monoxide precedes cyanation.
    Stripp ST; Lindenstrauss U; Granich C; Sawers RG; Soboh B
    PLoS One; 2014; 9(9):e107488. PubMed ID: 25211029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins.
    Soboh B; Stripp ST; Bielak C; Lindenstrauß U; Braussemann M; Javaid M; Hallensleben M; Granich C; Herzberg M; Heberle J; Sawers RG
    FEBS Lett; 2013 Aug; 587(16):2512-6. PubMed ID: 23851071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1.
    Soboh B; Lindenstrauss U; Granich C; Javed M; Herzberg M; Thomas C; Stripp ST
    Biochem J; 2014 Dec; 464(2):169-77. PubMed ID: 25184670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins.
    Miki K; Atomi H; Watanabe S
    Acc Chem Res; 2020 Apr; 53(4):875-886. PubMed ID: 32227866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly.
    Stripp ST; Oltmanns J; Müller CS; Ehrenberg D; Schlesinger R; Heberle J; Adrian L; Schünemann V; Pierik AJ; Soboh B
    Biochem J; 2021 Sep; 478(17):3281-3295. PubMed ID: 34409988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The iron-sulfur-containing HypC-HypD scaffold complex of the [NiFe]-hydrogenase maturation machinery is an ATPase.
    Nutschan K; Golbik RP; Sawers RG
    FEBS Open Bio; 2019 Dec; 9(12):2072-2079. PubMed ID: 31614069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase.
    Soboh B; Adrian L; Stripp ST
    J Biol Chem; 2022 Sep; 298(9):102291. PubMed ID: 35868564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation.
    Watanabe S; Matsumi R; Atomi H; Imanaka T; Miki K
    Structure; 2012 Dec; 20(12):2124-37. PubMed ID: 23123111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase.
    Bürstel I; Siebert E; Winter G; Hummel P; Zebger I; Friedrich B; Lenz O
    J Biol Chem; 2012 Nov; 287(46):38845-53. PubMed ID: 23019332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation of [NiFe]-hydrogenases in Escherichia coli.
    Forzi L; Sawers RG
    Biometals; 2007 Jun; 20(3-4):565-78. PubMed ID: 17216401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence the Isc iron-sulfur cluster biogenesis machinery is the source of iron for [NiFe]-cofactor biosynthesis in Escherichia coli.
    Haase A; Arlt C; Sinz A; Sawers RG
    Sci Rep; 2024 Feb; 14(1):3026. PubMed ID: 38321125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands.
    Reissmann S; Hochleitner E; Wang H; Paschos A; Lottspeich F; Glass RS; Böck A
    Science; 2003 Feb; 299(5609):1067-70. PubMed ID: 12586941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide.
    Thomas C; Muhr E; Sawers RG
    J Bacteriol; 2015 Sep; 197(18):2989-98. PubMed ID: 26170410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A redox-active HybG-HypD scaffold complex is required for optimal ATPase activity during [NiFe]-hydrogenase maturation in Escherichia coli.
    Haase A; Sawers RG
    FEBS Open Bio; 2023 Feb; 13(2):341-351. PubMed ID: 36602404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
    Senger M; Stripp ST; Soboh B
    J Biol Chem; 2017 Jul; 292(28):11670-11681. PubMed ID: 28539366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.