BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23598020)

  • 1. Stump-like mathematical model and computer simulation on dynamic separation of capillary zone electrophoresis with different sample injections.
    Zhang J; Huang QF; Jin J; Chang J; Li S; Fan LY; Cao CX
    Talanta; 2013 Feb; 105():278-86. PubMed ID: 23598020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model and dynamic computer simulation on free flow zone electrophoresis.
    Zhang J; Yan J; Li S; Pang B; Guo CG; Cao CX; Jin XQ
    Analyst; 2013 Oct; 138(19):5734-44. PubMed ID: 23923124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff-Van der Linde function.
    Erny GL; Bergström ET; Goodall DM
    J Chromatogr A; 2002 Jun; 959(1-2):229-39. PubMed ID: 12141548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster.
    Jaros M; Hruska V; Stedrý M; Zusková I; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation on a continuous moving chelation boundary in ethylenediaminetetraacetic acid-based sample sweeping in capillary electrophoresis.
    Jin J; Shao J; Li S; Zhang W; Fan LY; Cao CX
    J Chromatogr A; 2009 Jun; 1216(24):4913-22. PubMed ID: 19439312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function.
    Erny GL; Bergström ET; Goodall DM; Grieb S
    Anal Chem; 2001 Oct; 73(20):4862-72. PubMed ID: 11681462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the correct migration time and other parameters of the Haarhoff-van der Linde function from the peak geometry characteristics.
    Dubský P; Dvořák M; Műllerová L; Gaš B
    Electrophoresis; 2015 Mar; 36(5):655-61. PubMed ID: 25475400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonlinear electrophoretic model for PeakMaster: I. mathematical model.
    Hruška V; Riesová M; Gaš B
    Electrophoresis; 2012 Mar; 33(6):923-30. PubMed ID: 22528412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments.
    Jaros M; Vceláková K; Zusková I; Gas B
    Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical model and computer simulation on moving precipitate boundary electrophoresis for offline sample pre- concentration of heavy metal ion.
    Chang J; Zhang J; Wang HY; Fan LY; Fan YP; Li S; Cao CX
    Talanta; 2013 Jan; 103():314-21. PubMed ID: 23200393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic strength effects on electrophoretic focusing and separations.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2010 Mar; 31(5):910-9. PubMed ID: 20191554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis.
    Hirokawa T; Ikuta N; Yoshiyama T; Okamoto H
    Electrophoresis; 2001 Oct; 22(16):3444-8. PubMed ID: 11669524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyte and system eigenpeaks in nonaqueous capillary zone electrophoresis: theoretical description and experimental confirmation with methanol as solvent.
    Vceláková K; Zusková I; Porras SP; Gas B; Kenndler E
    Electrophoresis; 2005 Jan; 26(2):463-72. PubMed ID: 15657898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the effects of complex- formation equilibria in electrophoresis: I. mathematical model.
    Hruška V; Beneš M; Svobodová J; Zusková I; Gaš B
    Electrophoresis; 2012 Mar; 33(6):938-47. PubMed ID: 22528414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simul 5 - free dynamic simulator of electrophoresis.
    Hruska V; Jaros M; Gas B
    Electrophoresis; 2006 Mar; 27(5-6):984-91. PubMed ID: 16523464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sweeping with electrokinetic injection and analyte focusing by micelle collapse in two-dimensional separation via integration of micellar electrokinetic chromatography with capillary zone electrophoresis.
    Zhang Z; Du X; Li X
    Anal Chem; 2011 Feb; 83(4):1291-9. PubMed ID: 21247064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System peaks in capillary zone electrophoresis. 3. Practical rules for predicting the existence of system peaks in capillary zone electrophoresis of anions using indirect spectrophotometric detection.
    Macka M; Haddad PR; Gebauer P; Bocek P
    Electrophoresis; 1997 Oct; 18(11):1998-2007. PubMed ID: 9420159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eigenmobilities in background electrolytes for capillary zone electrophoresis: II. Eigenpeaks in univalent weak electrolytes.
    Stedrý M; Jaros M; Vceláková K; Gas B
    Electrophoresis; 2003 Jan; 24(3):536-47. PubMed ID: 12569543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart-cut capillary electrophoresis for drug analysis in mouse blood with electrochemical detection.
    Zhang ZX; Zhang XW; Zhang SS
    Anal Biochem; 2009 Apr; 387(2):171-7. PubMed ID: 19454242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System zones in capillary zone electrophoresis.
    Gas B; Kenndler E
    Electrophoresis; 2004 Dec; 25(23-24):3901-12. PubMed ID: 15597426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.