These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23598129)

  • 1. An impedimetric chemical sensor for determination of detergents residues.
    Bratov A; Abramova N; Ipatov A; Merlos A
    Talanta; 2013 Mar; 106():286-92. PubMed ID: 23598129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of a microcapillary impedimetric transducer to changes in surface conductance at liquid/solid interface.
    Bratov A; Abramova N
    J Colloid Interface Sci; 2013 Aug; 403():151-6. PubMed ID: 23684227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation processes due to the electrode-electrolyte interface in ionic solutions.
    Sanabria H; Miller JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051505. PubMed ID: 17279915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water density in the electric double layer at the insulator/electrolyte solution interface.
    Tikhonov AM
    J Phys Chem B; 2006 Feb; 110(6):2746-50. PubMed ID: 16471880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An induced current method for measuring zeta potential of electrolyte solution-air interface.
    Song Y; Zhao K; Wang J; Wu X; Pan X; Sun Y; Li D
    J Colloid Interface Sci; 2014 Feb; 416():101-4. PubMed ID: 24370408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode independent chemoresistive response for cobalt phthalocyanine in the space charge limited conductivity regime.
    Miller KA; Yang RD; Hale MJ; Park J; Fruhberger B; Colesniuc CN; Schuller IK; Kummel AC; Trogler WC
    J Phys Chem B; 2006 Jan; 110(1):361-6. PubMed ID: 16471543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements.
    Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR
    Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Drinking Water Sensor for Lead and Other Heavy Metals.
    Lin WC; Li Z; Burns MA
    Anal Chem; 2017 Sep; 89(17):8748-8756. PubMed ID: 28774174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater.
    Herzog G; Moujahid W; Twomey K; Lyons C; Ogurtsov VI
    Talanta; 2013 Nov; 116():26-32. PubMed ID: 24148368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The water-amorphous silica interface: analysis of the Stern layer and surface conduction.
    Zhang H; Hassanali AA; Shin YK; Knight C; Singer SJ
    J Chem Phys; 2011 Jan; 134(2):024705. PubMed ID: 21241144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diamond/aqueous electrolyte interface: an impedance investigation.
    Garrido JA; Nowy S; Härtl A; Stutzmann M
    Langmuir; 2008 Apr; 24(8):3897-904. PubMed ID: 18324855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy of glutathione, dithiothreitol and N-acetyl-L-cysteine self-assembled monolayers for electrochemical assay: sensitive determination of arsenic(III) in environmental and drinking water.
    Chen L; Zhou N; Li J; Chen Z; Liao C; Chen J
    Analyst; 2011 Nov; 136(21):4526-32. PubMed ID: 21922099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ionic conductivity in planar sodium-β"-alumina electrolyte for electrochemical energy storage applications.
    La Rosa D; Monforte G; D'Urso C; Baglio V; Antonucci V; Aricò AS
    ChemSusChem; 2010 Dec; 3(12):1390-7. PubMed ID: 20979128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.
    Widder MW; Brennan LM; Hanft EA; Schrock ME; James RR; van der Schalie WH
    J Appl Toxicol; 2015 Jul; 35(7):701-8. PubMed ID: 25231170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable impact of water on the discharge performance of a silicon-air battery.
    Cohn G; Macdonald DD; Ein-Eli Y
    ChemSusChem; 2011 Aug; 4(8):1124-9. PubMed ID: 21766461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized Ni@SiO2 core/shell magnetic nanoparticles as a chemosensor and adsorbent for Cu2+ ion in drinking water and human blood.
    Park M; Seo S; Lee SJ; Jung JH
    Analyst; 2010 Nov; 135(11):2802-5. PubMed ID: 20842293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac.
    Hu X; Yang J; Zhang J
    J Hazard Mater; 2011 Nov; 196():220-7. PubMed ID: 21945685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.
    Lowe BM; Maekawa Y; Shibuta Y; Sakata T; Skylaris CK; Green NG
    Phys Chem Chem Phys; 2017 Jan; 19(4):2687-2701. PubMed ID: 27786320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple impedimetric sensor for rapid lipase activity quantification.
    Zlatev R; Stoytcheva M; Valdez B; Montero G; Toscano L
    Talanta; 2019 Oct; 203():161-167. PubMed ID: 31202322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.