These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 23598251)
1. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. Zhang Q; Karadimitriou NK; Hassanizadeh SM; Kleingeld PJ; Imhof A J Colloid Interface Sci; 2013 Jul; 401():141-7. PubMed ID: 23598251 [TBL] [Abstract][Full Text] [Related]
2. Pore-Scale Study of Flow Rate on Colloid Attachment and Remobilization in a Saturated Micromodel. Zhang Q; Raoof A; Hassanizadeh SM J Environ Qual; 2015 Sep; 44(5):1376-83. PubMed ID: 26436255 [TBL] [Abstract][Full Text] [Related]
3. Colloidal surface interactions and membrane fouling: investigations at pore scale. Bacchin P; Marty A; Duru P; Meireles M; Aimar P Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419 [TBL] [Abstract][Full Text] [Related]
4. Detachment of colloids from a solid surface by a moving air-water interface. Sharma P; Flury M; Zhou J J Colloid Interface Sci; 2008 Oct; 326(1):143-50. PubMed ID: 18684467 [TBL] [Abstract][Full Text] [Related]
5. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling. Vitorge E; Szenknect S; Martins JM; Gaudet JP Environ Sci Process Impacts; 2013 Aug; 15(8):1590-600. PubMed ID: 23812006 [TBL] [Abstract][Full Text] [Related]
6. Distribution of colloid particles onto interfaces in partially saturated sand. Zevi Y; Dathe A; McCarthy JF; Richards BK; Steenhuis TS Environ Sci Technol; 2005 Sep; 39(18):7055-64. PubMed ID: 16201629 [TBL] [Abstract][Full Text] [Related]
7. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S; Bradford SA; van Genuchten MT; Walker SL J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262 [TBL] [Abstract][Full Text] [Related]
8. Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface. Paunov VN; Cayre OJ; Noble PF; Stoyanov SD; Velikov KP; Golding M J Colloid Interface Sci; 2007 Aug; 312(2):381-9. PubMed ID: 17449055 [TBL] [Abstract][Full Text] [Related]
9. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
10. Colloid mobilization by fluid displacement fronts in channels. Lazouskaya V; Wang LP; Or D; Wang G; Caplan JL; Jin Y J Colloid Interface Sci; 2013 Sep; 406():44-50. PubMed ID: 23800372 [TBL] [Abstract][Full Text] [Related]
11. PDMS-based porous particles as support beds for cell immobilization: bacterial biofilm formation as a function of porosity and polymer composition. Fernández MR; Casabona MG; Anupama VN; Krishnakumar B; Curutchet GA; Bernik DL Colloids Surf B Biointerfaces; 2010 Nov; 81(1):289-96. PubMed ID: 20702072 [TBL] [Abstract][Full Text] [Related]
12. Colloid mobilization and transport during capillary fringe fluctuations. Aramrak S; Flury M; Harsh JB; Zollars RL Environ Sci Technol; 2014 Jul; 48(13):7272-9. PubMed ID: 24897130 [TBL] [Abstract][Full Text] [Related]
13. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers. Pazmino EF; Ma H; Johnson WP Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252 [TBL] [Abstract][Full Text] [Related]
14. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the settlement and attachment strength of pediveligers of Mytilus galloprovincialis by changing surface wettability and microtopography. Carl C; Poole AJ; Sexton BA; Glenn FL; Vucko MJ; Williams MR; Whalan S; de Nys R Biofouling; 2012; 28(2):175-86. PubMed ID: 22332795 [TBL] [Abstract][Full Text] [Related]
16. Detachment of deposited colloids by advancing and receding air-water interfaces. Aramrak S; Flury M; Harsh JB Langmuir; 2011 Aug; 27(16):9985-93. PubMed ID: 21714545 [TBL] [Abstract][Full Text] [Related]
17. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization. Li Z; Zhang D; Li X Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544 [TBL] [Abstract][Full Text] [Related]
18. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property. Zhuang J; Qi J; Jin Y Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847 [TBL] [Abstract][Full Text] [Related]
19. Polydimethylsiloxane Replicas Efficacy for Simulating Fresh Produce Surfaces and Application in Mechanistic Study of Colloid Retention. Sun T; Lazouskaya V; Jin Y J Food Sci; 2019 Mar; 84(3):524-531. PubMed ID: 30775789 [TBL] [Abstract][Full Text] [Related]
20. Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. Morales VL; Zhang W; Gao B; Lion LW; Bisogni JJ; McDonough BA; Steenhuis TS Water Res; 2011 Feb; 45(4):1691-701. PubMed ID: 21193215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]