These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23598286)

  • 1. Synthesis and properties of antimonide nanowires.
    Mattias Borg B; Wernersson LE
    Nanotechnology; 2013 May; 24(20):202001. PubMed ID: 23598286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can antimonide-based nanowires form wurtzite crystal structure?
    Gorji Ghalamestani S; Lehmann S; Dick KA
    Nanoscale; 2016 Feb; 8(5):2778-86. PubMed ID: 26763161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in III-Sb nanowires: from synthesis to applications.
    Yip S; Shen L; Ho JC
    Nanotechnology; 2019 May; 30(20):202003. PubMed ID: 30625448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and composition controlled Ga(x)In(1-x)Sb nanowires: understanding ternary antimonide growth.
    Ghalamestani SG; Ek M; Ghasemi M; Caroff P; Johansson J; Dick KA
    Nanoscale; 2014 Jan; 6(2):1086-92. PubMed ID: 24296789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indium Antimonide Nanowires: Synthesis and Properties.
    Shafa M; Akbar S; Gao L; Fakhar-E-Alam M; Wang ZM
    Nanoscale Res Lett; 2016 Dec; 11(1):164. PubMed ID: 27009531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.
    Xu T; Dick KA; Plissard S; Nguyen TH; Makoudi Y; Berthe M; Nys JP; Wallart X; Grandidier B; Caroff P
    Nanotechnology; 2012 Mar; 23(9):095702. PubMed ID: 22322440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxide nanowire networks and their electronic and optoelectronic characteristics.
    Mathews N; Varghese B; Sun C; Thavasi V; Andreasson BP; Sow CH; Ramakrishna S; Mhaisalkar SG
    Nanoscale; 2010 Oct; 2(10):1984-98. PubMed ID: 20835439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxially grown III-arsenide-antimonide nanowires for optoelectronic applications.
    Ren D; Ahtapodov L; van Helvoort ATJ; Weman H; Fimland BO
    Nanotechnology; 2019 Jul; 30(29):294001. PubMed ID: 30917343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent metal oxide nanowire transistors.
    Chen D; Liu Z; Liang B; Wang X; Shen G
    Nanoscale; 2012 May; 4(10):3001-12. PubMed ID: 22495655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of InAs/InAsSb heterostructured nanowires.
    Ercolani D; Gemmi M; Nasi L; Rossi F; Pea M; Li A; Salviati G; Beltram F; Sorba L
    Nanotechnology; 2012 Mar; 23(11):115606. PubMed ID: 22381938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications.
    Dasgupta NP; Sun J; Liu C; Brittman S; Andrews SC; Lim J; Gao H; Yan R; Yang P
    Adv Mater; 2014 Apr; 26(14):2137-84. PubMed ID: 24604701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor nanowires: from self-organization to patterned growth.
    Fan HJ; Werner P; Zacharias M
    Small; 2006 Jun; 2(6):700-17. PubMed ID: 17193109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; MÃ¥rtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale synthesis and in situ functionalization of Zn3P2 and Zn4Sb3 nanowire powders.
    Brockway L; Van Laer M; Kang Y; Vaddiraju S
    Phys Chem Chem Phys; 2013 May; 15(17):6260-7. PubMed ID: 23519015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Straight Indium Antimonide Nanowires with Twinning Superlattices via a Solution Route.
    Qian Y; Yang Q
    Nano Lett; 2017 Dec; 17(12):7183-7190. PubMed ID: 29115841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanowire-based sensor electronics for chemical and biological applications.
    Zhang G; Zeng H; Liu J; Nagashima K; Takahashi T; Hosomi T; Tanaka W; Yanagida T
    Analyst; 2021 Nov; 146(22):6684-6725. PubMed ID: 34667998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.