These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
582 related articles for article (PubMed ID: 23598437)
1. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes. Vícha J; Patzschke M; Marek R Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods. Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118 [TBL] [Abstract][Full Text] [Related]
3. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol. Tsipis AC; Karapetsas IN Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094 [TBL] [Abstract][Full Text] [Related]
4. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches. Vícha J; Novotný J; Straka M; Repisky M; Ruud K; Komorovsky S; Marek R Phys Chem Chem Phys; 2015 Oct; 17(38):24944-55. PubMed ID: 26344822 [TBL] [Abstract][Full Text] [Related]
5. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes. Pawlak T; Munzarová ML; Pazderski L; Marek R J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337 [TBL] [Abstract][Full Text] [Related]
6. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes. Latouche C; Skouteris D; Palazzetti F; Barone V J Chem Theory Comput; 2015 Jul; 11(7):3281-9. PubMed ID: 26575764 [TBL] [Abstract][Full Text] [Related]
7. Platinum-modified adenines: unprecedented protonation behavior revealed by NMR spectroscopy and relativistic density-functional theory calculations. Vícha J; Demo G; Marek R Inorg Chem; 2012 Feb; 51(3):1371-9. PubMed ID: 22260420 [TBL] [Abstract][Full Text] [Related]
8. Computational study and molecular orbital analysis of NMR shielding, spin-spin coupling, and electric field gradients of azido platinum complexes. Sutter K; Autschbach J J Am Chem Soc; 2012 Aug; 134(32):13374-85. PubMed ID: 22794134 [TBL] [Abstract][Full Text] [Related]
9. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805 [TBL] [Abstract][Full Text] [Related]
10. Assessment of density functional methods for reaction energetics: iridium-catalyzed water oxidation as case study. Kazaryan A; Baerends EJ J Comput Chem; 2013 Apr; 34(10):870-8. PubMed ID: 23281098 [TBL] [Abstract][Full Text] [Related]
11. On the geometry dependence of the nuclear magnetic resonance chemical shift of mercury in thiolate complexes: A relativistic density functional theory study. Wu H; Hemmingsen L; Sauer SPA Magn Reson Chem; 2024 Sep; 62(9):648-669. PubMed ID: 38773942 [TBL] [Abstract][Full Text] [Related]
12. 103Rh NMR chemical shifts in organometallic complexes: a combined experimental and density functional study. Orian L; Bisello A; Santi S; Ceccon A; Saielli G Chemistry; 2004 Aug; 10(16):4029-40. PubMed ID: 15316995 [TBL] [Abstract][Full Text] [Related]
13. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds. Moncho S; Autschbach J J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333 [TBL] [Abstract][Full Text] [Related]
14. Spin-spin coupling constants transmitted through Ir-H...H-N dihydrogen bonds. Olejniczak M; Pecul M Chemphyschem; 2009 Jun; 10(8):1247-59. PubMed ID: 19418508 [TBL] [Abstract][Full Text] [Related]
15. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1045-58. PubMed ID: 18044804 [TBL] [Abstract][Full Text] [Related]
16. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides. Wodyński A; Repiský M; Pecul M J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652 [TBL] [Abstract][Full Text] [Related]
17. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects? Tsipis AC; Karapetsas IN Magn Reson Chem; 2016 Aug; 54(8):656-64. PubMed ID: 26990565 [TBL] [Abstract][Full Text] [Related]
18. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms. Maldonado AF; Aucar GA J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942 [TBL] [Abstract][Full Text] [Related]
19. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution. Truflandier LA; Autschbach J J Am Chem Soc; 2010 Mar; 132(10):3472-83. PubMed ID: 20166712 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts. Rodríguez-Rodríguez A; Esteban-Gómez D; de Blas A; Rodríguez-Blas T; Botta M; Tripier R; Platas-Iglesias C Inorg Chem; 2012 Dec; 51(24):13419-29. PubMed ID: 23215456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]