These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23598687)
1. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays. Borkiewicz OJ; Chapman KW; Chupas PJ Phys Chem Chem Phys; 2013 Jun; 15(22):8466-9. PubMed ID: 23598687 [TBL] [Abstract][Full Text] [Related]
2. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. Zhang J; Liu Z; Kong Q; Zhang C; Pang S; Yue L; Wang X; Yao J; Cui G ACS Appl Mater Interfaces; 2013 Jan; 5(1):128-34. PubMed ID: 23227828 [TBL] [Abstract][Full Text] [Related]
3. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries. Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846 [TBL] [Abstract][Full Text] [Related]
4. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries. Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries. Sun C; Rajasekhara S; Dong Y; Goodenough JB ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744 [TBL] [Abstract][Full Text] [Related]
6. Microfocused X-ray study on precipitate formation in the separator region of nonaqueous Li-O(2) batteries. Shui JL; Okasinski JS; Zhao D; Almer JD; Liu DJ ChemSusChem; 2012 Dec; 5(12):2421-6. PubMed ID: 23047616 [TBL] [Abstract][Full Text] [Related]
7. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632 [TBL] [Abstract][Full Text] [Related]
8. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Liu D; Yang Z; Wang P; Li F; Wang D; He D Nanoscale; 2013 Mar; 5(5):1917-21. PubMed ID: 23354412 [TBL] [Abstract][Full Text] [Related]
9. Ordered mesoporous carbon electrodes for Li-O2 batteries. Park JB; Lee J; Yoon CS; Sun YK ACS Appl Mater Interfaces; 2013 Dec; 5(24):13426-31. PubMed ID: 24236914 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Forgie JC; El Khakani S; MacNeil DD; Rochefort D Phys Chem Chem Phys; 2013 May; 15(20):7713-21. PubMed ID: 23595224 [TBL] [Abstract][Full Text] [Related]
11. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes. Klink S; Schuhmann W; La Mantia F ChemSusChem; 2014 Aug; 7(8):2159-66. PubMed ID: 24989450 [TBL] [Abstract][Full Text] [Related]
12. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Jiang J; Li Y; Liu J; Huang X Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657 [TBL] [Abstract][Full Text] [Related]
13. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. Qiu MC; Yang LW; Qi X; Li J; Zhong JX ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Boesenberg U; Marcus MA; Shukla AK; Yi T; McDermott E; Teh PF; Srinivasan M; Moewes A; Cabana J Sci Rep; 2014 Nov; 4():7133. PubMed ID: 25410966 [TBL] [Abstract][Full Text] [Related]
16. Reutilization of the expired tetracycline for lithium ion battery anode. Hou H; Dai Z; Liu X; Yao Y; Liao Q; Yu C; Li D Sci Total Environ; 2018 Jul; 630():495-501. PubMed ID: 29486442 [TBL] [Abstract][Full Text] [Related]
17. Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries. Kyeremateng NA; Plylahan N; dos Santos AC; Taveira LV; Dick LF; Djenizian T Chem Commun (Camb); 2013 May; 49(39):4205-7. PubMed ID: 23165523 [TBL] [Abstract][Full Text] [Related]
18. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Yoshio M; Wang H; Fukuda K Angew Chem Int Ed Engl; 2003 Sep; 42(35):4203-6. PubMed ID: 14502736 [No Abstract] [Full Text] [Related]
19. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries. Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504 [TBL] [Abstract][Full Text] [Related]
20. Size effect of lithium peroxide on charging performance of Li-O2 batteries. Hu Y; Han X; Cheng F; Zhao Q; Hu Z; Chen J Nanoscale; 2014 Jan; 6(1):177-80. PubMed ID: 24219997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]