These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23598687)
41. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380 [TBL] [Abstract][Full Text] [Related]
42. Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes. Carraro G; Barreca D; Cruz-Yusta M; Gasparotto A; Maccato C; Morales J; Sada C; Sánchez L Chemphyschem; 2012 Dec; 13(17):3798-801. PubMed ID: 23097215 [TBL] [Abstract][Full Text] [Related]
43. Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode. Bhandavat R; Singh G ACS Appl Mater Interfaces; 2012 Oct; 4(10):5092-7. PubMed ID: 23030550 [TBL] [Abstract][Full Text] [Related]
44. Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids. Lahiri A; Borisenko N; Endres F Top Curr Chem (Cham); 2018 Feb; 376(2):9. PubMed ID: 29468471 [TBL] [Abstract][Full Text] [Related]
45. Defect effects on the physical and electrochemical properties of nanoscale LiFe0.92PO4 and LiFe0.92PO4/C/graphene composites. Wang Y; Feng ZS; Zhang C; Yu L; Chen JJ; Hu J; Liu XZ Nanoscale; 2013 May; 5(9):3704-12. PubMed ID: 23493954 [TBL] [Abstract][Full Text] [Related]
46. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115 [TBL] [Abstract][Full Text] [Related]
47. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
48. Effects of self-assembled materials prepared from V2O5 for lithium ion electroinsertion. Galiote NA; Camargo MN; Iost RM; Crespilho F; Huguenin F Langmuir; 2011 Oct; 27(19):12209-17. PubMed ID: 21863861 [TBL] [Abstract][Full Text] [Related]
49. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Li L; Seng KH; Chen Z; Guo Z; Liu HK Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317 [TBL] [Abstract][Full Text] [Related]
50. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955 [TBL] [Abstract][Full Text] [Related]
51. Surface passivation of natural graphite electrode for lithium ion battery by chlorine gas. Suzuki S; Mazej Z; Zemva B; Ohzawa Y; Nakajima T Acta Chim Slov; 2013; 60(3):513-20. PubMed ID: 24169705 [TBL] [Abstract][Full Text] [Related]
52. LiFePO4 mesocrystals for lithium-ion batteries. Popovic J; Demir-Cakan R; Tornow J; Morcrette M; Su DS; Schlögl R; Antonietti M; Titirici MM Small; 2011 Apr; 7(8):1127-35. PubMed ID: 21449048 [TBL] [Abstract][Full Text] [Related]
53. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping. Pearse AJ; Gillette E; Lee SB; Rubloff GW Phys Chem Chem Phys; 2016 Jul; 18(28):19093-102. PubMed ID: 27357533 [TBL] [Abstract][Full Text] [Related]
54. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. Nishimura S; Nakamura M; Natsui R; Yamada A J Am Chem Soc; 2010 Oct; 132(39):13596-7. PubMed ID: 20831186 [TBL] [Abstract][Full Text] [Related]
55. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid. Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495 [TBL] [Abstract][Full Text] [Related]
56. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
57. Ag(6)Mo(2)O(7)F(3)Cl: a new silver cathode material for enhanced ICD primary lithium batteries. Sauvage F; Bodenez V; Tarascon JM; Poeppelmeier KR Inorg Chem; 2010 Jul; 49(14):6461-7. PubMed ID: 20545306 [TBL] [Abstract][Full Text] [Related]
58. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Fang J; Kelarakis A; Lin YW; Kang CY; Yang MH; Cheng CL; Wang Y; Giannelis EP; Tsai LD Phys Chem Chem Phys; 2011 Aug; 13(32):14457-61. PubMed ID: 21731963 [TBL] [Abstract][Full Text] [Related]
59. Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2⋅nH2O nanocubes: a highly efficient anode material for lithium batteries. Hu L; Zhang P; Zhong H; Zheng X; Yan N; Chen Q Chemistry; 2012 Nov; 18(47):15049-56. PubMed ID: 23032561 [TBL] [Abstract][Full Text] [Related]