These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23598744)

  • 1. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.
    Wong CH; Pumera M
    Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.
    D'Arcy JM; Tran HD; Stieg AZ; Gimzewski JK; Kaner RB
    Nanoscale; 2012 May; 4(10):3075-82. PubMed ID: 22415611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons.
    Kumar P; Panchakarla LS; Rao CN
    Nanoscale; 2011 May; 3(5):2127-9. PubMed ID: 21445381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 9. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.
    Zhu G; Yi Y; Han Z; Wang K; Wu X
    Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.
    Lin L; Zhang S
    Chem Commun (Camb); 2012 Oct; 48(82):10177-9. PubMed ID: 22932850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.
    Dimiev AM; Gizzatov A; Wilson LJ; Tour JM
    Chem Commun (Camb); 2013 Apr; 49(26):2613-5. PubMed ID: 23435853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets.
    Carretero-González J; Castillo-Martínez E; Dias-Lima M; Acik M; Rogers DM; Sovich J; Haines CS; Lepró X; Kozlov M; Zhakidov A; Chabal Y; Baughman RH
    Adv Mater; 2012 Nov; 24(42):5695-701. PubMed ID: 22911965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes.
    Le Goff A; Reuillard B; Cosnier S
    Langmuir; 2013 Jul; 29(27):8736-42. PubMed ID: 23767958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.
    Wang R; Sun J; Gao L; Xu C; Zhang J; Liu Y
    Nanoscale; 2011 Mar; 3(3):904-6. PubMed ID: 21132173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets.
    Chng EL; Chua CK; Pumera M
    Nanoscale; 2014 Sep; 6(18):10792-7. PubMed ID: 25104246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications.
    Kauffman DR; Star A
    Analyst; 2010 Nov; 135(11):2790-7. PubMed ID: 20733998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid.
    Han J; Wang Q; Zhai J; Han L; Dong S
    Analyst; 2015 Aug; 140(15):5295-300. PubMed ID: 26065906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.
    Moon GD; Joo JB; Yin Y
    Nanoscale; 2013 Dec; 5(23):11577-81. PubMed ID: 24114351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.