BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

858 related articles for article (PubMed ID: 23598900)

  • 1. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study.
    Cho KH; Lee WH
    Am J Phys Med Rehabil; 2013 May; 92(5):371-80; quiz 380-2, 458. PubMed ID: 23598900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: a randomized controlled trial.
    Cho KH; Lee WH
    Gait Posture; 2014; 39(1):523-8. PubMed ID: 24091250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke.
    Lloréns R; Gil-Gómez JA; Alcañiz M; Colomer C; Noé E
    Clin Rehabil; 2015 Mar; 29(3):261-8. PubMed ID: 25056999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study.
    Kim JH; Jang SH; Kim CS; Jung JH; You JH
    Am J Phys Med Rehabil; 2009 Sep; 88(9):693-701. PubMed ID: 19692788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients.
    Lee HJ; Cho KH; Lee WH
    Am J Phys Med Rehabil; 2013 Dec; 92(12):1051-9. PubMed ID: 24252934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action observation training of community ambulation for improving walking ability of patients with post-stroke hemiparesis: a randomized controlled pilot trial.
    Park HJ; Oh DW; Choi JD; Kim JM; Kim SY; Cha YJ; Jeon SJ
    Clin Rehabil; 2017 Aug; 31(8):1078-1086. PubMed ID: 27707943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Reality Reflection Therapy Improves Balance and Gait in Patients with Chronic Stroke: Randomized Controlled Trials.
    In T; Lee K; Song C
    Med Sci Monit; 2016 Oct; 22():4046-4053. PubMed ID: 27791207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait training induced change in corticomotor excitability in patients with chronic stroke.
    Yen CL; Wang RY; Liao KK; Huang CC; Yang YR
    Neurorehabil Neural Repair; 2008; 22(1):22-30. PubMed ID: 17507641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: a randomized controlled trial.
    Zhu Z; Cui L; Yin M; Yu Y; Zhou X; Wang H; Yan H
    Clin Rehabil; 2016 Jun; 30(6):587-93. PubMed ID: 26130657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study.
    Stein J; Bishop L; Stein DJ; Wong CK
    Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of weight-shift training on walking ability, ambulation, and weight distribution in individuals with chronic stroke: a pilot study.
    Andersson P; Franzén E
    Top Stroke Rehabil; 2015 Dec; 22(6):437-43. PubMed ID: 25921061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action observation training for functional activities after stroke: a pilot randomized controlled trial.
    Kim JH; Lee BH
    NeuroRehabilitation; 2013; 33(4):565-74. PubMed ID: 24029010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: a randomized controlled trial.
    Lee SW; Cho KH; Lee WH
    Clin Rehabil; 2013 Oct; 27(10):921-31. PubMed ID: 23818408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control.
    Yoshimoto T; Shimizu I; Hiroi Y; Kawaki M; Sato D; Nagasawa M
    Int J Rehabil Res; 2015 Dec; 38(4):338-43. PubMed ID: 26288120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of treadmill walking combined with obstacle-crossing on walking ability in ambulatory patients after stroke: a pilot randomized controlled trial.
    Jeong YG; Koo JW
    Top Stroke Rehabil; 2016 Dec; 23(6):406-412. PubMed ID: 27207495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations between Berg balance scale and gait speed in individuals with stroke wearing ankle-foot orthoses - a pilot study.
    Kobayashi T; Leung AK; Akazawa Y; Hutchins SW
    Disabil Rehabil Assist Technol; 2016; 11(3):219-22. PubMed ID: 24954715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of action observational training on walking ability in chronic stroke patients: a double-blind randomized controlled trial.
    Bang DH; Shin WS; Kim SY; Choi JD
    Clin Rehabil; 2013 Dec; 27(12):1118-25. PubMed ID: 24089434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treadmill training with tilt sensor functional electrical stimulation for improving balance, gait, and muscle architecture of tibialis anterior of survivors with chronic stroke: A randomized controlled trial.
    Hwang DY; Lee HJ; Lee GC; Lee SM
    Technol Health Care; 2015; 23(4):443-52. PubMed ID: 25735313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial.
    Bae YH; Lee SM; Ko M
    Top Stroke Rehabil; 2017 May; 24(4):309-313. PubMed ID: 28102113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of virtual reality using video gaming technology in elderly adults with diabetes mellitus.
    Lee S; Shin S
    Diabetes Technol Ther; 2013 Jun; 15(6):489-96. PubMed ID: 23560480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.