These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

861 related articles for article (PubMed ID: 23598900)

  • 1. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study.
    Cho KH; Lee WH
    Am J Phys Med Rehabil; 2013 May; 92(5):371-80; quiz 380-2, 458. PubMed ID: 23598900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: a randomized controlled trial.
    Cho KH; Lee WH
    Gait Posture; 2014; 39(1):523-8. PubMed ID: 24091250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke.
    Lloréns R; Gil-Gómez JA; Alcañiz M; Colomer C; Noé E
    Clin Rehabil; 2015 Mar; 29(3):261-8. PubMed ID: 25056999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study.
    Kim JH; Jang SH; Kim CS; Jung JH; You JH
    Am J Phys Med Rehabil; 2009 Sep; 88(9):693-701. PubMed ID: 19692788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients.
    Lee HJ; Cho KH; Lee WH
    Am J Phys Med Rehabil; 2013 Dec; 92(12):1051-9. PubMed ID: 24252934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action observation training of community ambulation for improving walking ability of patients with post-stroke hemiparesis: a randomized controlled pilot trial.
    Park HJ; Oh DW; Choi JD; Kim JM; Kim SY; Cha YJ; Jeon SJ
    Clin Rehabil; 2017 Aug; 31(8):1078-1086. PubMed ID: 27707943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Reality Reflection Therapy Improves Balance and Gait in Patients with Chronic Stroke: Randomized Controlled Trials.
    In T; Lee K; Song C
    Med Sci Monit; 2016 Oct; 22():4046-4053. PubMed ID: 27791207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait training induced change in corticomotor excitability in patients with chronic stroke.
    Yen CL; Wang RY; Liao KK; Huang CC; Yang YR
    Neurorehabil Neural Repair; 2008; 22(1):22-30. PubMed ID: 17507641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: a randomized controlled trial.
    Zhu Z; Cui L; Yin M; Yu Y; Zhou X; Wang H; Yan H
    Clin Rehabil; 2016 Jun; 30(6):587-93. PubMed ID: 26130657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study.
    Stein J; Bishop L; Stein DJ; Wong CK
    Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of weight-shift training on walking ability, ambulation, and weight distribution in individuals with chronic stroke: a pilot study.
    Andersson P; Franzén E
    Top Stroke Rehabil; 2015 Dec; 22(6):437-43. PubMed ID: 25921061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action observation training for functional activities after stroke: a pilot randomized controlled trial.
    Kim JH; Lee BH
    NeuroRehabilitation; 2013; 33(4):565-74. PubMed ID: 24029010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: a randomized controlled trial.
    Lee SW; Cho KH; Lee WH
    Clin Rehabil; 2013 Oct; 27(10):921-31. PubMed ID: 23818408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control.
    Yoshimoto T; Shimizu I; Hiroi Y; Kawaki M; Sato D; Nagasawa M
    Int J Rehabil Res; 2015 Dec; 38(4):338-43. PubMed ID: 26288120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of treadmill walking combined with obstacle-crossing on walking ability in ambulatory patients after stroke: a pilot randomized controlled trial.
    Jeong YG; Koo JW
    Top Stroke Rehabil; 2016 Dec; 23(6):406-412. PubMed ID: 27207495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations between Berg balance scale and gait speed in individuals with stroke wearing ankle-foot orthoses - a pilot study.
    Kobayashi T; Leung AK; Akazawa Y; Hutchins SW
    Disabil Rehabil Assist Technol; 2016; 11(3):219-22. PubMed ID: 24954715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of action observational training on walking ability in chronic stroke patients: a double-blind randomized controlled trial.
    Bang DH; Shin WS; Kim SY; Choi JD
    Clin Rehabil; 2013 Dec; 27(12):1118-25. PubMed ID: 24089434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treadmill training with tilt sensor functional electrical stimulation for improving balance, gait, and muscle architecture of tibialis anterior of survivors with chronic stroke: A randomized controlled trial.
    Hwang DY; Lee HJ; Lee GC; Lee SM
    Technol Health Care; 2015; 23(4):443-52. PubMed ID: 25735313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial.
    Bae YH; Lee SM; Ko M
    Top Stroke Rehabil; 2017 May; 24(4):309-313. PubMed ID: 28102113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of virtual reality using video gaming technology in elderly adults with diabetes mellitus.
    Lee S; Shin S
    Diabetes Technol Ther; 2013 Jun; 15(6):489-96. PubMed ID: 23560480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.