BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 23598995)

  • 1. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.
    Yang CW; Lu YH; Hwang IS
    J Phys Condens Matter; 2013 May; 25(18):184010. PubMed ID: 23598995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.
    Walczyk W; Schön PM; Schönherr H
    J Phys Condens Matter; 2013 May; 25(18):184005. PubMed ID: 23598774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the stability of surface nanobubbles.
    Wang S; Liu M; Dong Y
    J Phys Condens Matter; 2013 May; 25(18):184007. PubMed ID: 23598863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of induced nanobubbles from water/graphite interfaces by partial degassing.
    Zhang XH; Li G; Maeda N; Hu J
    Langmuir; 2006 Oct; 22(22):9238-43. PubMed ID: 17042536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanobubbles do not sit alone at the solid-liquid interface.
    Peng H; Hampton MA; Nguyen AV
    Langmuir; 2013 May; 29(20):6123-30. PubMed ID: 23597206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle tracking around surface nanobubbles.
    Dietrich E; Zandvliet HJ; Lohse D; Seddon JR
    J Phys Condens Matter; 2013 May; 25(18):184009. PubMed ID: 23598947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2013 Jan; 29(2):620-32. PubMed ID: 23210847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically controlled formation and growth of hydrogen nanobubbles.
    Zhang L; Zhang Y; Zhang X; Li Z; Shen G; Ye M; Fan C; Fang H; Hu J
    Langmuir; 2006 Sep; 22(19):8109-13. PubMed ID: 16952249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles.
    Tarábková H; Janda P
    J Phys Condens Matter; 2013 May; 25(18):184001. PubMed ID: 23598572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cleaning using nanobubbles: defouling by electrochemical generation of bubbles.
    Wu Z; Chen H; Dong Y; Mao H; Sun J; Chen S; Craig VS; Hu J
    J Colloid Interface Sci; 2008 Dec; 328(1):10-4. PubMed ID: 18829043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.
    Nishiyama T; Yamada Y; Ikuta T; Takahashi K; Takata Y
    Langmuir; 2015 Jan; 31(3):982-6. PubMed ID: 25540821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.
    Walczyk W; Hain N; Schönherr H
    Soft Matter; 2014 Aug; 10(32):5945-54. PubMed ID: 24988375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the interaction between AFM tips and surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobubbles and their role in slip and drag.
    Maali A; Bhushan B
    J Phys Condens Matter; 2013 May; 25(18):184003. PubMed ID: 23598711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.
    Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L
    Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces.
    Yang S; Tsai P; Kooij ES; Prosperetti A; Zandvliet HJ; Lohse D
    Langmuir; 2009 Feb; 25(3):1466-74. PubMed ID: 19123858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface.
    Zhang XH; Zhang X; Sun J; Zhang Z; Li G; Fang H; Xiao X; Zeng X; Hu J
    Langmuir; 2007 Feb; 23(4):1778-83. PubMed ID: 17279656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study.
    Kolivoška V; Gál M; Hromadová M; Lachmanová S; Tarábková H; Janda P; Pospíšil L; Turoňová AM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():213-9. PubMed ID: 22341519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of nanobubbles on hydrophobic surfaces in water.
    Yang S; Dammer SM; Bremond N; Zandvliet HJ; Kooij ES; Lohse D
    Langmuir; 2007 Jun; 23(13):7072-7. PubMed ID: 17503857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions.
    Zhang XH; Maeda N; Craig VS
    Langmuir; 2006 May; 22(11):5025-35. PubMed ID: 16700590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.