BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 23598995)

  • 21. Thermodynamic stability of interfacial gaseous states.
    Zhang XH; Maeda N; Hu J
    J Phys Chem B; 2008 Nov; 112(44):13671-5. PubMed ID: 18842008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction and dynamics of ambient water adlayers on graphite probed using AFM voltage nanolithography and electrostatic force microscopy.
    Gowthami T; Kurra N; Raina G
    Nanotechnology; 2014 Apr; 25(15):155304. PubMed ID: 24651210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular layer of gaslike domains at a hydrophobic-water interface observed by frequency-modulation atomic force microscopy.
    Lu YH; Yang CW; Hwang IS
    Langmuir; 2012 Sep; 28(35):12691-5. PubMed ID: 22897342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained modelling of surface nanobubbles.
    Grosfils P
    J Phys Condens Matter; 2013 May; 25(18):184006. PubMed ID: 23598798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface.
    Vázquez-Campos S; Péter M; Dong M; Xu S; Xu W; Gersen H; Linderoth TR; Schönherr H; Besenbacher F; Crego-Calama M; Reinhoudt DN
    Langmuir; 2007 Sep; 23(20):10294-8. PubMed ID: 17722940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of nanoparticles from plain and patterned surfaces using nanobubbles.
    Yang S; Duisterwinkel A
    Langmuir; 2011 Sep; 27(18):11430-5. PubMed ID: 21806003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interfacial gas nanobubbles or oil nanodroplets?
    Wang X; Zhao B; Hu J; Wang S; Tai R; Gao X; Zhang L
    Phys Chem Chem Phys; 2017 Jan; 19(2):1108-1114. PubMed ID: 27942625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive.
    Hampton MA; Nguyen AV
    J Colloid Interface Sci; 2009 May; 333(2):800-6. PubMed ID: 19215936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial nanobubbles on atomically flat substrates with different hydrophobicities.
    Wang X; Zhao B; Ma W; Wang Y; Gao X; Tai R; Zhou X; Zhang L
    Chemphyschem; 2015 Apr; 16(5):1003-7. PubMed ID: 25694234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of surface modification on interfacial nanobubble morphology and contact line tension.
    Rangharajan KK; Kwak KJ; Conlisk AT; Wu Y; Prakash S
    Soft Matter; 2015 Jul; 11(26):5214-23. PubMed ID: 26041331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanobubbles and the nanobubble bridging capillary force.
    Hampton MA; Nguyen AV
    Adv Colloid Interface Sci; 2010 Feb; 154(1-2):30-55. PubMed ID: 20152956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist?
    Peng H; Birkett GR; Nguyen AV
    Adv Colloid Interface Sci; 2015 Aug; 222():573-80. PubMed ID: 25267688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy.
    Sboros V; Glynos E; Pye SD; Moran CM; Butler M; Ross J; Short R; McDicken WN; Koutsos V
    Ultrasound Med Biol; 2006 Apr; 32(4):579-85. PubMed ID: 16616603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The origin of the "snap-in" in the force curve between AFM probe and the water/gas interface of nanobubbles.
    Song Y; Zhao B; Zhang L; Lü J; Wang S; Dong Y; Hu J
    Chemphyschem; 2014 Feb; 15(3):492-9. PubMed ID: 24478257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of synthetic homo- and hetero-oligodeoxynucleotides onto highly oriented pyrolytic graphite: atomic force microscopy characterization.
    Chiorcea Paquim AM; Oretskaya TS; Oliveira Brett AM
    Biophys Chem; 2006 May; 121(2):131-41. PubMed ID: 16460874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation on the temperature difference method for producing nanobubbles and their physical properties.
    Guan M; Guo W; Gao L; Tang Y; Hu J; Dong Y
    Chemphyschem; 2012 Jun; 13(8):2115-8. PubMed ID: 22505224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Force Spectroscopy Revealed a High-Gas-Density State near the Graphite Substrate inside Surface Nanobubbles.
    Wang S; Zhou L; Wang X; Wang C; Dong Y; Zhang Y; Gao Y; Zhang L; Hu J
    Langmuir; 2019 Feb; 35(7):2498-2505. PubMed ID: 30645126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size measurement of nanoparticles using atomic force microscopy.
    Grobelny J; DelRio FW; Pradeep N; Kim DI; Hackley VA; Cook RF
    Methods Mol Biol; 2011; 697():71-82. PubMed ID: 21116955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the shape of surface nanobubbles.
    Borkent BM; de Beer S; Mugele F; Lohse D
    Langmuir; 2010 Jan; 26(1):260-8. PubMed ID: 20038172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.