These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 23599229)
1. Predicting complications of percutaneous coronary intervention using a novel support vector method. Lee G; Gurm HS; Syed Z J Am Med Inform Assoc; 2013; 20(4):778-86. PubMed ID: 23599229 [TBL] [Abstract][Full Text] [Related]
2. Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions. Hamilton DE; Albright J; Seth M; Painter I; Maynard C; Hira RS; Sukul D; Gurm HS Eur Heart J; 2024 Feb; 45(8):601-609. PubMed ID: 38233027 [TBL] [Abstract][Full Text] [Related]
3. Predicting emergency coronary artery bypass graft following PCI: application of a computational model to refer patients to hospitals with and without onsite surgical backup. Syed Z; Moscucci M; Share D; Gurm HS Open Heart; 2015; 2(1):e000243. PubMed ID: 26688738 [TBL] [Abstract][Full Text] [Related]
5. Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality. Matheny ME; Resnic FS; Arora N; Ohno-Machado L J Biomed Inform; 2007 Dec; 40(6):688-97. PubMed ID: 17600771 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention. Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991 [TBL] [Abstract][Full Text] [Related]
7. Predicting coronary artery disease: a comparison between two data mining algorithms. Ayatollahi H; Gholamhosseini L; Salehi M BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958 [TBL] [Abstract][Full Text] [Related]
8. Machine learning-based long-term outcome prediction in patients undergoing percutaneous coronary intervention. Liu S; Yang S; Xing A; Zheng L; Shen L; Tu B; Yao Y Cardiovasc Diagn Ther; 2021 Jun; 11(3):736-743. PubMed ID: 34295700 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography. Golpour P; Ghayour-Mobarhan M; Saki A; Esmaily H; Taghipour A; Tajfard M; Ghazizadeh H; Moohebati M; Ferns GA Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899733 [TBL] [Abstract][Full Text] [Related]
10. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention. Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564 [TBL] [Abstract][Full Text] [Related]
11. Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. Raihan-Al-Masud M; Mondal MRH PLoS One; 2020; 15(2):e0228422. PubMed ID: 32027680 [TBL] [Abstract][Full Text] [Related]
12. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan. Kuo PJ; Wu SC; Chien PC; Rau CS; Chen YC; Hsieh HY; Hsieh CH BMJ Open; 2018 Jan; 8(1):e018252. PubMed ID: 29306885 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of a Novel Scoring System for Predicting Technical Success of Chronic Total Occlusion Percutaneous Coronary Interventions: The PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) Score. Christopoulos G; Kandzari DE; Yeh RW; Jaffer FA; Karmpaliotis D; Wyman MR; Alaswad K; Lombardi W; Grantham JA; Moses J; Christakopoulos G; Tarar MNJ; Rangan BV; Lembo N; Garcia S; Cipher D; Thompson CA; Banerjee S; Brilakis ES JACC Cardiovasc Interv; 2016 Jan; 9(1):1-9. PubMed ID: 26762904 [TBL] [Abstract][Full Text] [Related]
15. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. Gurm HS; Seth M; Kooiman J; Share D J Am Coll Cardiol; 2013 Jun; 61(22):2242-8. PubMed ID: 23721921 [TBL] [Abstract][Full Text] [Related]
16. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. Arsanjani R; Xu Y; Dey D; Fish M; Dorbala S; Hayes S; Berman D; Germano G; Slomka P J Nucl Med; 2013 Apr; 54(4):549-55. PubMed ID: 23482666 [TBL] [Abstract][Full Text] [Related]
17. Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration. Jiang X; Menon A; Wang S; Kim J; Ohno-Machado L PLoS One; 2012; 7(11):e48823. PubMed ID: 23139819 [TBL] [Abstract][Full Text] [Related]
18. Percutaneous Coronary Intervention for Chronic Total Occlusion-The Michigan Experience: Insights From the BMC2 Registry. Othman H; Seth M; Zein R; Rosman H; Lalonde T; Yamasaki H; Alaswad K; Menees D; Mehta RH; Gurm H; Daher E; JACC Cardiovasc Interv; 2020 Jun; 13(11):1357-1368. PubMed ID: 32417095 [TBL] [Abstract][Full Text] [Related]
19. Support Vector Machines and logistic regression to predict temporal artery biopsy outcomes. Ing E; Su W; Schonlau M; Torun N Can J Ophthalmol; 2019 Feb; 54(1):116-118. PubMed ID: 30851764 [TBL] [Abstract][Full Text] [Related]
20. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]