These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23600520)

  • 1. Recalcitrant vulnerability curves: methods of analysis and the concept of fibre bridges for enhanced cavitation resistance.
    Cai J; Li S; Zhang H; Zhang S; Tyree MT
    Plant Cell Environ; 2014 Jan; 37(1):35-44. PubMed ID: 23600520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.
    Schuldt B; Leuschner C; Brock N; Horna V
    Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does water flow from vessel to vessel? Further investigation of the tracheid bridge concept.
    Pan R; Tyree MT
    Tree Physiol; 2019 Jun; 39(6):1019-1031. PubMed ID: 30825311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.
    Hajek P; Leuschner C; Hertel D; Delzon S; Schuldt B
    Tree Physiol; 2014 Jul; 34(7):744-56. PubMed ID: 25009155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis.
    Hacke UG; Jacobsen AL; Pratt RB
    Plant Cell Environ; 2009 Oct; 32(10):1324-33. PubMed ID: 19453480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.
    Cai J; Tyree MT
    Plant Cell Environ; 2010 Jul; 33(7):1059-69. PubMed ID: 20199629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species.
    Scholz A; Rabaey D; Stein A; Cochard H; Smets E; Jansen S
    Tree Physiol; 2013 Jul; 33(7):684-94. PubMed ID: 23933827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What causes the differences in cavitation resistance of two shrubs? Wood anatomical explanations and reliability testing of vulnerability curves.
    Zhao H; Jiang Z; Ma J; Cai J
    Physiol Plant; 2020 Jun; 169(2):156-168. PubMed ID: 31828790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues.
    Vergeynst LL; Dierick M; Bogaerts JA; Cnudde V; Steppe K
    Tree Physiol; 2015 Apr; 35(4):400-9. PubMed ID: 25030935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root resistance to cavitation is accurately measured using a centrifuge technique.
    Pratt RB; MacKinnon ED; Venturas MD; Crous CJ; Jacobsen AL
    Tree Physiol; 2015 Feb; 35(2):185-96. PubMed ID: 25716876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the hydraulic efficiency of a palm species (Iriartea deltoidea) with other wood types.
    Renninger HJ; McCulloh KA; Phillips N
    Tree Physiol; 2013 Feb; 33(2):152-60. PubMed ID: 23296336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought.
    Nardini A; Battistuzzo M; Savi T
    New Phytol; 2013 Oct; 200(2):322-329. PubMed ID: 23593942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees.
    McCulloh KA; Johnson DM; Meinzer FC; Voelker SL; Lachenbruch B; Domec JC
    Plant Cell Environ; 2012 Jan; 35(1):116-25. PubMed ID: 21895699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat.
    Johnson DM; Brodersen CR; Reed M; Domec JC; Jackson RB
    Ann Bot; 2014 Mar; 113(4):617-27. PubMed ID: 24363350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling of angiosperm xylem structure with safety and efficiency.
    Hacke UG; Sperry JS; Wheeler JK; Castro L
    Tree Physiol; 2006 Jun; 26(6):689-701. PubMed ID: 16510385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species.
    McCulloh KA; Johnson DM; Meinzer FC; Woodruff DR
    Plant Cell Environ; 2014 May; 37(5):1171-83. PubMed ID: 24289816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First insights into the functional role of vasicentric tracheids and parenchyma in eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety?
    Barotto AJ; Fernandez ME; Gyenge J; Meyra A; Martinez-Meier A; Monteoliva S
    Tree Physiol; 2016 Dec; 36(12):1485-1497. PubMed ID: 27614358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical statistical modeling of xylem vulnerability to cavitation.
    Ogle K; Barber JJ; Willson C; Thompson B
    New Phytol; 2009; 182(2):541-554. PubMed ID: 19210723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.