These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23600577)

  • 1. In vitro bioactivity and degradability of β-tricalcium phosphate porous scaffold fabricated via selective laser sintering.
    Shuai C; Zhuang J; Hu H; Peng S; Liu D; Liu J
    Biotechnol Appl Biochem; 2013; 60(2):266-73. PubMed ID: 23600577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid.
    Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M
    Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.
    Szubert M; Adamska K; Szybowicz M; Jesionowski T; Buchwald T; Voelkel A
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():236-44. PubMed ID: 24268255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering.
    Wiria FE; Leong KF; Chua CK; Liu Y
    Acta Biomater; 2007 Jan; 3(1):1-12. PubMed ID: 17055789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials.
    Doyle H; Lohfeld S; McHugh P
    Med Eng Phys; 2015 Aug; 37(8):767-76. PubMed ID: 26054804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering.
    Sohier J; Daculsi G; Sourice S; de Groot K; Layrolle P
    J Biomed Mater Res A; 2010 Mar; 92(3):1105-14. PubMed ID: 19301273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering.
    Shuai C; Mao Z; Lu H; Nie Y; Hu H; Peng S
    Biofabrication; 2013 Mar; 5(1):015014. PubMed ID: 23385303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting.
    Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F
    J Biomed Mater Res A; 2008 Apr; 85(1):218-27. PubMed ID: 17688280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy.
    Dou J; You Q; Gu G; Chen C; Zhang X
    Biointerphases; 2016 Sep; 11(3):031006. PubMed ID: 27440396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between properties and microstructure of laser sintered porous
    Shuai C; Feng P; Zhang L; Gao C; Hu H; Peng S; Min A
    Sci Technol Adv Mater; 2013 Oct; 14(5):055002. PubMed ID: 27877609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings.
    Leeuwenburgh SC; Wolke JG; Siebers MC; Schoonman J; Jansen JA
    Biomaterials; 2006 Jun; 27(18):3368-78. PubMed ID: 16500702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery.
    El-Ghannam A; Ning CQ; Mehta J
    J Biomed Mater Res A; 2004 Dec; 71(3):377-90. PubMed ID: 15470721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.