BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23600666)

  • 1. A communication network within the cytoplasmic domain of toll-like receptors has remained conserved during evolution.
    Singh S; Pandey K; Rathore YS; Sagar A; Pattnaik UB; Ashish
    J Biomol Struct Dyn; 2014; 32(5):694-700. PubMed ID: 23600666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains.
    Mikami T; Miyashita H; Takatsuka S; Kuroki Y; Matsushima N
    Gene; 2012 Jul; 503(2):235-43. PubMed ID: 22587897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1RAPL.
    Khan JA; Brint EK; O'Neill LA; Tong L
    J Biol Chem; 2004 Jul; 279(30):31664-70. PubMed ID: 15123616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the effect of key mutations on the conformational dynamics of toll-like receptor dimers through molecular dynamics simulations and protein structure networks.
    Mahita J; Sowdhamini R
    Proteins; 2018 Apr; 86(4):475-490. PubMed ID: 29383743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression, purification, and crystallization of Toll/interleukin-1 receptor (TIR) domains.
    Tao X; Tong L
    Methods Mol Biol; 2009; 517():81-8. PubMed ID: 19378015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Toll-like receptors TLR4 and 7 signaling pathways by SIGIRR: a computational approach.
    Gong J; Wei T; Stark RW; Jamitzky F; Heckl WM; Anders HJ; Lech M; Rössle SC
    J Struct Biol; 2010 Mar; 169(3):323-30. PubMed ID: 20025973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the sequence-structure relationship of TLR cytoplasm's Toll/Interleukin-1 receptor domain towards understanding the conserved functionality of TLR 2 heterodimer in mammals.
    Ghosh SK; Saha B; Banerjee R
    J Biomol Struct Dyn; 2021 Sep; 39(15):5348-5357. PubMed ID: 32643540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains.
    Xu Y; Tao X; Shen B; Horng T; Medzhitov R; Manley JL; Tong L
    Nature; 2000 Nov; 408(6808):111-5. PubMed ID: 11081518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The STIR-domain superfamily in signal transduction, development and immunity.
    Novatchkova M; Leibbrandt A; Werzowa J; Neubüser A; Eisenhaber F
    Trends Biochem Sci; 2003 May; 28(5):226-9. PubMed ID: 12765832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling.
    Gautam JK; Ashish ; Comeau LD; Krueger JK; Smith MF
    J Biol Chem; 2006 Oct; 281(40):30132-42. PubMed ID: 16893894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2.
    Tao X; Xu Y; Zheng Y; Beg AA; Tong L
    Biochem Biophys Res Commun; 2002 Nov; 299(2):216-21. PubMed ID: 12437972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of critical regions within the TIR domain of IL-1 receptor type I.
    Radons J; Falk W; Dove S
    Int J Biochem Cell Biol; 2015 Nov; 68():15-20. PubMed ID: 26279140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a TIR-like protein from Paracoccus denitrificans.
    Low LY; Mukasa T; Reed JC; Pascual J
    Biochem Biophys Res Commun; 2007 May; 356(2):481-6. PubMed ID: 17362878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways.
    Gauthier ME; Du Pasquier L; Degnan BM
    Evol Dev; 2010; 12(5):519-33. PubMed ID: 20883219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of toll-like receptor 18 from soiny mullet (Liza haematocheila): Giving insights on the ligand binding mechanism of fish specific TLRs.
    Qi Z; Xu Y; Wang X; Jiang J; Meng F; Zhang Q; Huang B
    Fish Shellfish Immunol; 2020 Dec; 107(Pt B):490-496. PubMed ID: 33098989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer.
    Nyman T; Stenmark P; Flodin S; Johansson I; Hammarström M; Nordlund P
    J Biol Chem; 2008 May; 283(18):11861-5. PubMed ID: 18332149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of the toll-like receptor family and its ligand complexes.
    Jin MS; Lee JO
    Immunity; 2008 Aug; 29(2):182-91. PubMed ID: 18701082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
    Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y
    BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TLR signalling adaptor TRIF/TICAM-1 has an N-terminal helical domain with structural similarity to IFIT proteins.
    Ullah MO; Ve T; Mangan M; Alaidarous M; Sweet MJ; Mansell A; Kobe B
    Acta Crystallogr D Biol Crystallogr; 2013 Dec; 69(Pt 12):2420-30. PubMed ID: 24311583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction.
    Fitzgerald KA; Palsson-McDermott EM; Bowie AG; Jefferies CA; Mansell AS; Brady G; Brint E; Dunne A; Gray P; Harte MT; McMurray D; Smith DE; Sims JE; Bird TA; O'Neill LA
    Nature; 2001 Sep; 413(6851):78-83. PubMed ID: 11544529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.