These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23601122)

  • 1. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures.
    Li X; Zhao W; Li J; Jiang J; Chen J; Chen J
    Chemosphere; 2013 Aug; 92(8):1029-34. PubMed ID: 23601122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Prediction Models for the Reactivity of Organic Compounds with Ozone in Aqueous Solution by Quantum Chemical Calculations: The Role of Delocalized and Localized Molecular Orbitals.
    Lee M; Zimmermann-Steffens SG; Arey JS; Fenner K; von Gunten U
    Environ Sci Technol; 2015 Aug; 49(16):9925-35. PubMed ID: 26121114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.
    Gupta S; Basant N; Mohan D; Singh KP
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14034-46. PubMed ID: 27040550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures.
    Li C; Yang X; Li X; Chen J; Qiao X
    Chemosphere; 2014 Jan; 95():613-8. PubMed ID: 24210594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the rate constants of volatile organic compounds (VOCs) with ozone reaction at different temperatures.
    Liu Y; Liu S; Cheng Z; Tan Y; Gao X; Shen Z; Yuan T
    Environ Pollut; 2021 Jan; 273():116502. PubMed ID: 33486251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting reaction rate constants of ozone with ionic/non-ionic compounds in water.
    Zhang X; Li S; Yang Y; Zhao Y; Qu J; Li C
    Sci Total Environ; 2022 Aug; 835():155501. PubMed ID: 35483457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms.
    Lee M; Blum LC; Schmid E; Fenner K; von Gunten U
    Environ Sci Process Impacts; 2017 Mar; 19(3):465-476. PubMed ID: 28191571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.
    Lee Y; von Gunten U
    Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of ozonization reaction rate constants of aromatic pollutants and QSAR study.
    Jiang JL; Yue XA; Chen QF; Gao Z
    Bull Environ Contam Toxicol; 2010 Dec; 85(6):568-72. PubMed ID: 21052624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of tissue: air partition coefficients--theoretical vs. experimental methods.
    Basak SC; Mills D; Gute BD
    SAR QSAR Environ Res; 2006 Oct; 17(5):515-32. PubMed ID: 17050189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation.
    Cheng Z; Yang B; Chen Q; Tan Y; Gao X; Yuan T; Shen Z
    Chemosphere; 2018 Dec; 212():828-836. PubMed ID: 30193231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures.
    Oberg T
    SAR QSAR Environ Res; 2007; 18(1-2):127-39. PubMed ID: 17365964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach.
    Modarresi H; Modarress H; Dearden JC
    Chemosphere; 2007 Feb; 66(11):2067-76. PubMed ID: 17113627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ranking of volatile organic compounds for tropospheric degradability by oxidants: a QSPR approach.
    Gramatica P; Pilutti P; Papa E
    SAR QSAR Environ Res; 2002 Dec; 13(7-8):743-53. PubMed ID: 12570050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of heterogeneous reaction of ozone with linoleic acid and its dependence on temperature, physical state, RH, and ozone concentration.
    Zeng G; Holladay S; Langlois D; Zhang Y; Liu Y
    J Phys Chem A; 2013 Mar; 117(9):1963-74. PubMed ID: 23347186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of QSAR model for predicting the inclusion constants of organic chemicals with α-cyclodextrin.
    Wei M; Yang X; Watson P; Yang F; Liu H
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17565-17574. PubMed ID: 29663298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of air to liver partition coefficient for volatile organic compounds using QSAR approaches.
    Dashtbozorgi Z; Golmohammadi H
    Eur J Med Chem; 2010 Jun; 45(6):2182-90. PubMed ID: 20153567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.