These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23601176)

  • 21. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.
    Kawai S; Urban J; Piccolis M; Panchaud N; De Virgilio C; Loewith R
    Eukaryot Cell; 2011 Oct; 10(10):1367-9. PubMed ID: 21841122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast.
    Pan Y
    Exp Gerontol; 2011 Nov; 46(11):847-52. PubMed ID: 21884780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?
    Sampaio-Marques B; Felgueiras C; Silva A; Rodrigues F; Ludovico P
    Biochem Soc Trans; 2011 Oct; 39(5):1466-70. PubMed ID: 21936835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.
    Cai Y; Wei YH
    Oncotarget; 2016 Mar; 7(10):10812-26. PubMed ID: 26934328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
    Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS
    FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic silencing mediates mitochondria stress-induced longevity.
    Schroeder EA; Raimundo N; Shadel GS
    Cell Metab; 2013 Jun; 17(6):954-964. PubMed ID: 23747251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TORC1 signaling exerts spatial control over microtubule dynamics by promoting nuclear export of Stu2.
    van der Vaart B; Fischböck J; Mieck C; Pichler P; Mechtler K; Medema RH; Westermann S
    J Cell Biol; 2017 Nov; 216(11):3471-3484. PubMed ID: 28972103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TORC2 signaling is antagonized by protein phosphatase 2A and the Far complex in Saccharomyces cerevisiae.
    Pracheil T; Thornton J; Liu Z
    Genetics; 2012 Apr; 190(4):1325-39. PubMed ID: 22298706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae.
    Ha CW; Huh WK
    Nucleic Acids Res; 2011 Mar; 39(4):1336-50. PubMed ID: 20947565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially Distinct Pools of TORC1 Balance Protein Homeostasis.
    Hatakeyama R; Péli-Gulli MP; Hu Z; Jaquenoud M; Garcia Osuna GM; Sardu A; Dengjel J; De Virgilio C
    Mol Cell; 2019 Jan; 73(2):325-338.e8. PubMed ID: 30527664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The MAP kinase-activated protein kinase Rck2p plays a role in rapamycin sensitivity in Saccharomyces cerevisiae and Candida albicans.
    Li X; Huang X; Zhao J; Zhao J; Wei Y; Jiang L
    FEMS Yeast Res; 2008 Aug; 8(5):715-24. PubMed ID: 18625027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing lifespan of budding yeast by pharmacological lowering of amino acid pools.
    Hepowit NL; Macedo JKA; Young LEA; Liu K; Sun RC; MacGurn JA; Dickson RC
    Aging (Albany NY); 2021 Mar; 13(6):7846-7871. PubMed ID: 33744865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Vam6 GEF controls TORC1 by activating the EGO complex.
    Binda M; Péli-Gulli MP; Bonfils G; Panchaud N; Urban J; Sturgill TW; Loewith R; De Virgilio C
    Mol Cell; 2009 Sep; 35(5):563-73. PubMed ID: 19748353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae.
    Shin CS; Huh WK
    Autophagy; 2011 Aug; 7(8):854-62. PubMed ID: 21490424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TOR signaling never gets old: aging, longevity and TORC1 activity.
    Evans DS; Kapahi P; Hsueh WC; Kockel L
    Ageing Res Rev; 2011 Apr; 10(2):225-37. PubMed ID: 20385253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae.
    Zhang J; Vaga S; Chumnanpuen P; Kumar R; Vemuri GN; Aebersold R; Nielsen J
    Mol Syst Biol; 2011 Nov; 7():545. PubMed ID: 22068328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring the effective TOR-dependent network: a computational study in yeast.
    Mohammadi S; Subramaniam S; Grama A
    BMC Syst Biol; 2013 Aug; 7():84. PubMed ID: 24005029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases.
    Lee J; Moir RD; McIntosh KB; Willis IM
    Mol Cell; 2012 Mar; 45(6):836-43. PubMed ID: 22364741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Tor and cAMP-dependent protein kinase signaling pathways coordinately control autophagy in Saccharomyces cerevisiae.
    Stephan JS; Yeh YY; Ramachandran V; Deminoff SJ; Herman PK
    Autophagy; 2010 Feb; 6(2):294-5. PubMed ID: 20087062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic regulation, mitochondria and the life-prolonging effect of rapamycin: a mini-review.
    Pan Y; Nishida Y; Wang M; Verdin E
    Gerontology; 2012; 58(6):524-30. PubMed ID: 22947849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.