These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 23601691)
1. Comparisons of tibial accelerations when walking on a wood composite vs. a concrete mezzanine surface. Lavender SA; Mehta JP; Allread WG Appl Ergon; 2013 Sep; 44(5):824-7. PubMed ID: 23601691 [TBL] [Abstract][Full Text] [Related]
2. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. Chapinal N; de Passillé AM; Pastell M; Hänninen L; Munksgaard L; Rushen J J Dairy Sci; 2011 Jun; 94(6):2895-901. PubMed ID: 21605759 [TBL] [Abstract][Full Text] [Related]
3. Step time variability and pelvis acceleration patterns of younger and older adults: effects of footwear and surface conditions. Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR Res Sports Med; 2011 Jan; 19(1):28-41. PubMed ID: 21253974 [TBL] [Abstract][Full Text] [Related]
4. Test-retest reliability and minimal clinical change determination for 3-dimensional tibial and femoral accelerations during treadmill walking in knee osteoarthritis patients. Turcot K; Aissaoui R; Boivin K; Hagemeister N; Pelletier M; de Guise JA Arch Phys Med Rehabil; 2008 Apr; 89(4):732-7. PubMed ID: 18374005 [TBL] [Abstract][Full Text] [Related]
5. Quantifying the effectiveness of static and dynamic insoles in reducing the tibial shock experienced during walking. Lavender SA; Wang Z; Allread WG; Sommerich CM Appl Ergon; 2019 Jan; 74():118-123. PubMed ID: 30487090 [TBL] [Abstract][Full Text] [Related]
6. The influence of body mass index and velocity on knee biomechanics during walking. Freedman Silvernail J; Milner CE; Thompson D; Zhang S; Zhao X Gait Posture; 2013 Apr; 37(4):575-9. PubMed ID: 23103243 [TBL] [Abstract][Full Text] [Related]
7. Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR Gait Posture; 2009 Jul; 30(1):65-70. PubMed ID: 19359178 [TBL] [Abstract][Full Text] [Related]
8. Softer, higher-friction flooring improves gait of cows with and without sole ulcers. Flower FC; de Passillé AM; Weary DM; Sanderson DJ; Rushen J J Dairy Sci; 2007 Mar; 90(3):1235-42. PubMed ID: 17297100 [TBL] [Abstract][Full Text] [Related]
9. Effects of overweight and obesity on walking characteristics in adolescents. Dufek JS; Currie RL; Gouws PL; Candela L; Gutierrez AP; Mercer JA; Putney LG Hum Mov Sci; 2012 Aug; 31(4):897-906. PubMed ID: 22154217 [TBL] [Abstract][Full Text] [Related]
10. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling. Lai DT; Taylor SB; Begg RK Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220 [TBL] [Abstract][Full Text] [Related]
11. Upper body accelerations during walking in healthy young and elderly men. Kavanagh JJ; Barrett RS; Morrison S Gait Posture; 2004 Dec; 20(3):291-8. PubMed ID: 15531176 [TBL] [Abstract][Full Text] [Related]
12. Footwear and foot orthotic effectiveness research: a new approach. Cornwall MW; McPoil TG J Orthop Sports Phys Ther; 1995 Jun; 21(6):337-44. PubMed ID: 7655477 [TBL] [Abstract][Full Text] [Related]
13. Tibial impact accelerations in gait of primary school children: The effect of age and speed. Tirosh O; Orland G; Eliakim A; Nemet D; Steinberg N Gait Posture; 2017 Sep; 57():265-269. PubMed ID: 28683418 [TBL] [Abstract][Full Text] [Related]
14. Determination of the optimal locations of surface-mounted markers on the tibial segment. Peters A; Sangeux M; Morris ME; Baker R Gait Posture; 2009 Jan; 29(1):42-8. PubMed ID: 18678490 [TBL] [Abstract][Full Text] [Related]
15. Accelerometry: a technique for quantifying movement patterns during walking. Kavanagh JJ; Menz HB Gait Posture; 2008 Jul; 28(1):1-15. PubMed ID: 18178436 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking. Kubo M; Wagenaar RC; Saltzman E; Holt KG Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887 [TBL] [Abstract][Full Text] [Related]
17. Effect of stride frequency on the energy cost of walking in obese teenagers. Delextrat A; Matthew D; Cohen DD; Brisswalter J Hum Mov Sci; 2011 Feb; 30(1):115-24. PubMed ID: 21168928 [TBL] [Abstract][Full Text] [Related]
18. Lateral wedges alter mediolateral load distributions at the knee joint in obese individuals. Russell EM; Miller RH; Umberger BR; Hamill J J Orthop Res; 2013 May; 31(5):665-71. PubMed ID: 23239489 [TBL] [Abstract][Full Text] [Related]
19. Effects of obesity on the biomechanics of walking at different speeds. Browning RC; Kram R Med Sci Sports Exerc; 2007 Sep; 39(9):1632-41. PubMed ID: 17805097 [TBL] [Abstract][Full Text] [Related]
20. The use of a heel-mounted accelerometer as an adjunct measure of slip distance. McGorry RW; DiDomenico A; Chang CC Appl Ergon; 2007 May; 38(3):369-76. PubMed ID: 16806040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]