These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23602253)

  • 1. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions.
    Ochando-Pulido JM; Hodaifa G; Victor-Ortega MD; Rodriguez-Vives S; Martinez-Ferez A
    J Hazard Mater; 2013 Dec; 263 Pt 1():168-76. PubMed ID: 23602253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment.
    Ochando-Pulido JM; Hodaifa G; Victor-Ortega MD; Rodriguez-Vives S; Martinez-Ferez A
    J Hazard Mater; 2013 Dec; 263 Pt 1():158-67. PubMed ID: 23910394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology.
    Ochando-Pulido JM; Victor-Ortega MD; Hodaifa G; Martinez-Ferez A
    Sci Total Environ; 2015 Jan; 503-504():113-21. PubMed ID: 25017639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.
    Chon K; Kim SJ; Moon J; Cho J
    Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control systems for olive mill wastewater treatment with ultrafiltration and nanofiltration membrane in series based on the boundary flux theory.
    Ochando-Pulido JM
    Water Sci Technol; 2017 Dec; 76(11-12):2968-2978. PubMed ID: 29210684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater.
    Ochando-Pulido JM; Rodriguez-Vives S; Hodaifa G; Martinez-Ferez A
    Water Res; 2012 Oct; 46(15):4621-32. PubMed ID: 22771149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.
    Pulido JM
    Sci Total Environ; 2016 Sep; 563-564():664-75. PubMed ID: 26472261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration.
    Gong YW; Zhang HX; Cheng XN
    Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification.
    Ochando-Pulido JM; Martinez-Ferez A
    Membranes (Basel); 2015 Sep; 5(4):513-31. PubMed ID: 26426062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced treatment of membrane bioreactor (MBR) effluents for effective wastewater reclamation.
    Sarp S; Chon K; Kim IS; Cho J
    Water Sci Technol; 2011; 63(2):303-10. PubMed ID: 21252435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of olive-mill wastewater from a two-phase process by chemical oxidation on an industrial scale.
    Nieto LM; Hodaifa G; Vives SR; Casares JA; Driss SB; Grueso R
    Water Sci Technol; 2009; 59(10):2017-27. PubMed ID: 19474497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane technology for the future treatment of paper mill effluents: chances and challenges of further system closure.
    Simstich B; Oeller HJ
    Water Sci Technol; 2010; 62(9):2190-7. PubMed ID: 21045349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.
    Ioannou-Ttofa L; Michael-Kordatou I; Fattas SC; Eusebio A; Ribeiro B; Rusan M; Amer AR; Zuraiqi S; Waismand M; Linder C; Wiesman Z; Gilron J; Fatta-Kassinos D
    Water Res; 2017 May; 114():1-13. PubMed ID: 28214720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.