These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Midpoint potentials of the mitochondrial cytochromes of Crithidia fasciculata. Kusel JP; Storey BT J Bacteriol; 1976 Aug; 127(2):812-6. PubMed ID: 986389 [TBL] [Abstract][Full Text] [Related]
43. Spectroscopic and oxidation-reduction properties of Rhodobacter capsulatus cytochrome c1 and its M183K and M183H variants. Li J; Darrouzet E; Dhawan IK; Johnson MK; Osyczka A; Daldal F; Knaff DB Biochim Biophys Acta; 2002 Dec; 1556(2-3):175-86. PubMed ID: 12460675 [TBL] [Abstract][Full Text] [Related]
44. Oxidation-reduction properties of several low potential iron-sulfur proteins and of methylviologen. Stombaugh NA; Sundquist JE; Burris RH; Orme-Johnson WH Biochemistry; 1976 Jun; 15(12):2633-41. PubMed ID: 181047 [TBL] [Abstract][Full Text] [Related]
45. Heme-heme interaction in cytochrome c oxidase: the cooperativity of the hemes of cytochrome c oxidase as evidenced in the reaction with CO. Leigh JS; Wilson DF; Owen CS; King TE Arch Biochem Biophys; 1974 Feb; 160(2):476-86. PubMed ID: 4364769 [No Abstract] [Full Text] [Related]
46. Electron transfer complexes of Ascaris suum muscle mitochondria: I. Characterization of NADH-cytochrome c reductase (complex I-III), with special reference to cytochrome localization. Takamiya S; Furushima R; Oya H Mol Biochem Parasitol; 1984 Oct; 13(2):121-34. PubMed ID: 6513990 [TBL] [Abstract][Full Text] [Related]
47. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy. Dridge EJ; Watts CA; Jepson BJ; Line K; Santini JM; Richardson DJ; Butler CS Biochem J; 2007 Nov; 408(1):19-28. PubMed ID: 17688424 [TBL] [Abstract][Full Text] [Related]
48. Controlled reduction of cytochrome b in succinate-cytochrome c reductase complex by succinate in the presence of ascorbate and antimycin. Trumpower BL; Katki A Biochem Biophys Res Commun; 1975 Jul; 65(1):16-23. PubMed ID: 1170861 [No Abstract] [Full Text] [Related]
49. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation. Stein N; Love D; Judd ET; Elliott SJ; Bennett B; Pacheco AA Biochemistry; 2015 Jun; 54(24):3749-58. PubMed ID: 26042961 [TBL] [Abstract][Full Text] [Related]
51. Multiheme cytochromes from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Pereira IA; Pacheco I; Liu MY; Legall J; Xavier AV; Teixeira M Eur J Biochem; 1997 Sep; 248(2):323-8. PubMed ID: 9346284 [TBL] [Abstract][Full Text] [Related]
52. Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase. Ohnishi T; King TE; Salerno JC; Blum H; Bowyer JR; Maida T J Biol Chem; 1981 Jun; 256(11):5577-82. PubMed ID: 6263883 [TBL] [Abstract][Full Text] [Related]
53. The multiplicity and stoichiometry of the prosthetic groups in QH2: cytochrome c oxidoreductase as studied by EPR. de Vries S; Albracht SP; Leeuwerik FJ Biochim Biophys Acta; 1979 May; 546(2):316-33. PubMed ID: 221014 [TBL] [Abstract][Full Text] [Related]
54. Modification of the thermodynamic properties of the electron-transferring groups in mitochondrial succinate dehydrogenase upon binding of succinate. Bonomi F; Pagani S; Cerletti P; Giori C Eur J Biochem; 1983 Aug; 134(3):439-45. PubMed ID: 6884342 [TBL] [Abstract][Full Text] [Related]
55. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose. Burns KD; Pieper PA; Liu HW; Stankovich MT Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489 [TBL] [Abstract][Full Text] [Related]
56. Soluble cytochrome b-c1 complex and the reconstitution of succinate-cytochrome c reductase. Yu CA; Yu L; King TE J Biol Chem; 1974 Aug; 249(15):4905-10. PubMed ID: 4367811 [No Abstract] [Full Text] [Related]
57. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
58. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118 [TBL] [Abstract][Full Text] [Related]
59. Rapid redox equilibrium between the mitochondrial Q pool and cytochrome b during triphasic reduction of cytochrome b by succinate. Chen M; Zhu QS Biochim Biophys Acta; 1986 Oct; 851(3):457-68. PubMed ID: 3019394 [TBL] [Abstract][Full Text] [Related]
60. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. Lawson RJ; Leys D; Sutcliffe MJ; Kemp CA; Cheesman MR; Smith SJ; Clarkson J; Smith WE; Haq I; Perkins JB; Munro AW Biochemistry; 2004 Oct; 43(39):12410-26. PubMed ID: 15449931 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]