BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 23602910)

  • 1. PGC-1α, mitochondrial dysfunction, and Huntington's disease.
    Johri A; Chandra A; Flint Beal M
    Free Radic Biol Med; 2013 Sep; 62():37-46. PubMed ID: 23602910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression.
    Di Cristo F; Finicelli M; Digilio FA; Paladino S; Valentino A; Scialò F; D'Apolito M; Saturnino C; Galderisi U; Giordano A; Melone MAB; Peluso G
    J Cell Physiol; 2019 Jun; 234(6):9233-9246. PubMed ID: 30362565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond.
    Tsunemi T; La Spada AR
    Prog Neurobiol; 2012 May; 97(2):142-51. PubMed ID: 22100502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation.
    Chaturvedi RK; Calingasan NY; Yang L; Hennessey T; Johri A; Beal MF
    Hum Mol Genet; 2010 Aug; 19(16):3190-205. PubMed ID: 20529956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration.
    Weydt P; Pineda VV; Torrence AE; Libby RT; Satterfield TF; Lazarowski ER; Gilbert ML; Morton GJ; Bammler TK; Strand AD; Cui L; Beyer RP; Easley CN; Smith AC; Krainc D; Luquet S; Sweet IR; Schwartz MW; La Spada AR
    Cell Metab; 2006 Nov; 4(5):349-62. PubMed ID: 17055784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration.
    Cui L; Jeong H; Borovecki F; Parkhurst CN; Tanese N; Krainc D
    Cell; 2006 Oct; 127(1):59-69. PubMed ID: 17018277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGC-1alpha, a new therapeutic target in Huntington's disease?
    McGill JK; Beal MF
    Cell; 2006 Nov; 127(3):465-8. PubMed ID: 17081970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating mitochondrial regulator PGC-1α expression by astrocytic NGF is a therapeutic strategy for Huntington's disease.
    Chen LW; Horng LY; Wu CL; Sung HC; Wu RT
    Neuropharmacology; 2012 Sep; 63(4):719-32. PubMed ID: 22633948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function.
    Tsunemi T; Ashe TD; Morrison BE; Soriano KR; Au J; Roque RA; Lazarowski ER; Damian VA; Masliah E; La Spada AR
    Sci Transl Med; 2012 Jul; 4(142):142ra97. PubMed ID: 22786682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired PGC-1alpha function in muscle in Huntington's disease.
    Chaturvedi RK; Adhihetty P; Shukla S; Hennessy T; Calingasan N; Yang L; Starkov A; Kiaei M; Cannella M; Sassone J; Ciammola A; Squitieri F; Beal MF
    Hum Mol Genet; 2009 Aug; 18(16):3048-65. PubMed ID: 19460884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease.
    Johri A; Calingasan NY; Hennessey TM; Sharma A; Yang L; Wille E; Chandra A; Beal MF
    Hum Mol Genet; 2012 Mar; 21(5):1124-37. PubMed ID: 22095692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.
    Kong X; Wang R; Xue Y; Liu X; Zhang H; Chen Y; Fang F; Chang Y
    PLoS One; 2010 Jul; 5(7):e11707. PubMed ID: 20661474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.
    Yang X; Liu Q; Li Y; Tang Q; Wu T; Chen L; Pu S; Zhao Y; Zhang G; Huang C; Zhang J; Zhang Z; Huang Y; Zou M; Shi X; Jiang W; Wang R; He J
    Adipocyte; 2020 Dec; 9(1):484-494. PubMed ID: 32835596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
    Chaturvedi RK; Hennessey T; Johri A; Tiwari SK; Mishra D; Agarwal S; Kim YS; Beal MF
    Hum Mol Genet; 2012 Aug; 21(15):3474-88. PubMed ID: 22589249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxisome proliferator-activated receptor γ, coactivator 1α deletion induces angiotensin II-associated vascular dysfunction by increasing mitochondrial oxidative stress and vascular inflammation.
    Kröller-Schön S; Jansen T; Schüler A; Oelze M; Wenzel P; Hausding M; Kerahrodi JG; Beisele M; Lackner KJ; Daiber A; Münzel T; Schulz E
    Arterioscler Thromb Vasc Biol; 2013 Aug; 33(8):1928-35. PubMed ID: 23788763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass.
    Uittenbogaard M; Baxter KK; Chiaramello A
    ASN Neuro; 2010 May; 2(2):e00034. PubMed ID: 20517466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease.
    Jin J; Albertz J; Guo Z; Peng Q; Rudow G; Troncoso JC; Ross CA; Duan W
    J Neurochem; 2013 May; 125(3):410-9. PubMed ID: 23373812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis.
    Ayala-Peña S
    Free Radic Biol Med; 2013 Sep; 62():102-110. PubMed ID: 23602907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells.
    Feng H; Wang JY; Zheng M; Zhang CL; An YM; Li L; Wu LL
    Exp Cell Res; 2016 Feb; 341(2):177-86. PubMed ID: 26844631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis.
    Baldelli S; Aquilano K; Ciriolo MR
    Cell Death Dis; 2014 Nov; 5(11):e1515. PubMed ID: 25375380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.