BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23602948)

  • 1. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH.
    Garciarena CD; Youm JB; Swietach P; Vaughan-Jones RD
    J Mol Cell Cardiol; 2013 Aug; 61():51-9. PubMed ID: 23602948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcolemmal localisation of Na+/H+ exchange and Na+-HCO3- co-transport influences the spatial regulation of intracellular pH in rat ventricular myocytes.
    Garciarena CD; Ma YL; Swietach P; Huc L; Vaughan-Jones RD
    J Physiol; 2013 May; 591(9):2287-306. PubMed ID: 23420656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium ion transporters as new therapeutic targets in heart failure.
    Baartscheer A; van Borren MM
    Cardiovasc Hematol Agents Med Chem; 2008 Oct; 6(4):229-36. PubMed ID: 18855635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na⁺ transport in the normal and failing heart - remember the balance.
    Despa S; Bers DM
    J Mol Cell Cardiol; 2013 Aug; 61():2-10. PubMed ID: 23608603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation by intracellular carbonic anhydrase of Na+ -HCO3- co-transport but not Na+ / H+ exchange activity in the mammalian ventricular myocyte.
    Villafuerte FC; Swietach P; Youm JB; Ford K; Cardenas R; Supuran CT; Cobden PM; Rohling M; Vaughan-Jones RD
    J Physiol; 2014 Mar; 592(5):991-1007. PubMed ID: 24297849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na⁺ ions as spatial intracellular messengers for co-ordinating Ca²⁺ signals during pH heterogeneity in cardiomyocytes.
    Swietach P; Spitzer KW; Vaughan-Jones RD
    Cardiovasc Res; 2015 Feb; 105(2):171-81. PubMed ID: 25514933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Regulated Na(+) influx into the mammalian ventricular myocyte: the relative role of Na(+)-H(+) exchange and Na(+)-HCO Co-transport.
    Vaughan-Jones RD; Villafuerte FC; Swietach P; Yamamoto T; Rossini A; Spitzer KW
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S134-S140. PubMed ID: 16686668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease.
    Wakabayashi S; Hisamitsu T; Nakamura TY
    J Mol Cell Cardiol; 2013 Aug; 61():68-76. PubMed ID: 23429007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac sodium transport and excitation-contraction coupling.
    Aronsen JM; Swift F; Sejersted OM
    J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte.
    Vaughan-Jones RD; Spitzer KW
    Biochem Cell Biol; 2002; 80(5):579-96. PubMed ID: 12440699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular Na+ regulation in cardiac myocytes.
    Bers DM; Barry WH; Despa S
    Cardiovasc Res; 2003 Mar; 57(4):897-912. PubMed ID: 12650868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart.
    Ch'en FF; Villafuerte FC; Swietach P; Cobden PM; Vaughan-Jones RD
    Br J Pharmacol; 2008 Mar; 153(5):972-82. PubMed ID: 18204485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.
    Chen GS; Lee SP; Huang SF; Chao SC; Chang CY; Wu GJ; Li CH; Loh SH
    Arch Oral Biol; 2018 Jun; 90():19-26. PubMed ID: 29524788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model.
    Baartscheer A; Schumacher CA; van Borren MM; Belterman CN; Coronel R; Fiolet JW
    Cardiovasc Res; 2003 Mar; 57(4):1015-24. PubMed ID: 12650879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na/Ca exchange and contraction of the heart.
    Ottolia M; Torres N; Bridge JH; Philipson KD; Goldhaber JI
    J Mol Cell Cardiol; 2013 Aug; 61():28-33. PubMed ID: 23770352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The HVCN1 voltage-gated proton channel contributes to pH regulation in canine ventricular myocytes.
    Ma J; Gao X; Li Y; DeCoursey TE; Shull GE; Wang HS
    J Physiol; 2022 May; 600(9):2089-2103. PubMed ID: 35244217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes.
    Sag CM; Wagner S; Maier LS
    Free Radic Biol Med; 2013 Oct; 63():338-49. PubMed ID: 23732518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes.
    Chase A; Orchard CH
    J Mol Cell Cardiol; 2011 Jan; 50(1):187-93. PubMed ID: 20971118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of CaMKII in post acidosis arrhythmias: a simulation study using a human myocyte model.
    Lascano EC; Said M; Vittone L; Mattiazzi A; Mundiña-Weilenmann C; Negroni JA
    J Mol Cell Cardiol; 2013 Jul; 60():172-83. PubMed ID: 23624090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.