BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 23603326)

  • 1. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic capillary networks are more sensitive than ektacytometry to the decline of red blood cell deformability induced by storage.
    Piety NZ; Stutz J; Yilmaz N; Xia H; Yoshida T; Shevkoplyas SS
    Sci Rep; 2021 Jan; 11(1):604. PubMed ID: 33436749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device.
    Shevkoplyas SS; Yoshida T; Gifford SC; Bitensky MW
    Lab Chip; 2006 Jul; 6(7):914-20. PubMed ID: 16804596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network.
    Piety NZ; Reinhart WH; Pourreau PH; Abidi R; Shevkoplyas SS
    Transfusion; 2016 Apr; 56(4):844-51. PubMed ID: 26711854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial microvascular network: a new tool for measuring rheologic properties of stored red blood cells.
    Burns JM; Yang X; Forouzan O; Sosa JM; Shevkoplyas SS
    Transfusion; 2012 May; 52(5):1010-23. PubMed ID: 22043858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.
    Lipowsky HH; Cram LE; Justice W; Eppihimer MJ
    Microvasc Res; 1993 Jul; 46(1):43-64. PubMed ID: 8412852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
    Cabrales P
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage.
    Burns JM; Yoshida T; Dumont LJ; Yang X; Piety NZ; Shevkoplyas SS
    Blood Transfus; 2016 Jan; 14(1):80-8. PubMed ID: 26674833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Washing stored red blood cells in an albumin solution improves their morphologic and hemorheologic properties.
    Reinhart WH; Piety NZ; Deuel JW; Makhro A; Schulzki T; Bogdanov N; Goede JS; Bogdanova A; Abidi R; Shevkoplyas SS
    Transfusion; 2015 Aug; 55(8):1872-81. PubMed ID: 25752902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K; Raju SP; Chu X; Warren M; Pandya CD; Hoda N; Fulzele S; Raju R
    Int Immunopharmacol; 2018 Dec; 65():244-247. PubMed ID: 30340103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D
    Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technologies for measuring red blood cell deformability.
    Matthews K; Lamoureux ES; Myrand-Lapierre ME; Duffy SP; Ma H
    Lab Chip; 2022 Mar; 22(7):1254-1274. PubMed ID: 35266475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited effects of activated protein C on red blood cell deformability.
    Piagnerelli M; Njimi H; Coelho TV; Reggiori G; Castanares Zapatero D; Donadello K; Vincent JL
    Clin Hemorheol Microcirc; 2013; 53(4):387-91. PubMed ID: 22504218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film.
    Ogura E; Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):721-6. PubMed ID: 1937504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network.
    Lu M; Kanne CK; Reddington RC; Lezzar DL; Sheehan VA; Shevkoplyas SS
    Front Physiol; 2021; 12():633080. PubMed ID: 33995119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of deep learning to the assessment of red blood cell deformability.
    Turgut A; Yalçin Ö
    Biorheology; 2021; 58(1-2):51-60. PubMed ID: 34219708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.