BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 23603359)

  • 1. Selenocysteine biosynthesis and insertion machinery in Naegleria gruberi.
    da Silva MT; Caldas VE; Costa FC; Silvestre DA; Thiemann OH
    Mol Biochem Parasitol; 2013 Apr; 188(2):87-90. PubMed ID: 23603359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Leishmania selenoproteins and SECIS element.
    Cassago A; Rodrigues EM; Prieto EL; Gaston KW; Alfonzo JD; Iribar MP; Berry MJ; Cruz AK; Thiemann OH
    Mol Biochem Parasitol; 2006 Oct; 149(2):128-34. PubMed ID: 16766053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea.
    Xu XM; Carlson BA; Zhang Y; Mix H; Kryukov GV; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    Biol Trace Elem Res; 2007 Dec; 119(3):234-41. PubMed ID: 17916946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli.
    Gursinsky T; Gröbe D; Schierhorn A; Jäger J; Andreesen JR; Söhling B
    Appl Environ Microbiol; 2008 Mar; 74(5):1385-93. PubMed ID: 18165360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological implications of selenium and its role in trypanosomiasis treatment.
    da Silva MT; Silva-Jardim I; Thiemann OH
    Curr Med Chem; 2014; 21(15):1772-80. PubMed ID: 24251578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis.
    Stock T; Selzer M; Connery S; Seyhan D; Resch A; Rother M
    Mol Microbiol; 2011 Nov; 82(3):734-47. PubMed ID: 21992107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis.
    Turanov AA; Xu XM; Carlson BA; Yoo MH; Gladyshev VN; Hatfield DL
    Adv Nutr; 2011 Mar; 2(2):122-8. PubMed ID: 22332041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenocysteine-containing thioredoxin reductase in C. elegans.
    Gladyshev VN; Krause M; Xu XM; Korotkov KV; Kryukov GV; Sun QA; Lee BJ; Wootton JC; Hatfield DL
    Biochem Biophys Res Commun; 1999 Jun; 259(2):244-9. PubMed ID: 10362494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for Sec incorporation with the regions upstream of the UGA Sec codon to play a key role.
    Goto C; Osaka T; Mizutani T
    Biofactors; 2001; 14(1-4):25-35. PubMed ID: 11568437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unique tRNA
    Serrão VHB; Silva IR; da Silva MTA; Scortecci JF; de Freitas Fernandes A; Thiemann OH
    Amino Acids; 2018 Sep; 50(9):1145-1167. PubMed ID: 29948343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leishmania donovani Encodes a Functional Selenocysteinyl-tRNA Synthase.
    Manhas R; Gowri VS; Madhubala R
    J Biol Chem; 2016 Jan; 291(3):1203-20. PubMed ID: 26586914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
    Chavatte L; Brown BA; Driscoll DM
    Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine.
    Peng JJ; Yue SY; Fang YH; Liu XL; Wang CH
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome?
    Taskov K; Chapple C; Kryukov GV; Castellano S; Lobanov AV; Korotkov KV; Guigó R; Gladyshev VN
    Nucleic Acids Res; 2005; 33(7):2227-38. PubMed ID: 15843685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional investigation of a putative archaeal selenocysteine synthase.
    Kaiser JT; Gromadski K; Rother M; Engelhardt H; Rodnina MV; Wahl MC
    Biochemistry; 2005 Oct; 44(40):13315-27. PubMed ID: 16201757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
    Yuan J; Palioura S; Salazar JC; Su D; O'Donoghue P; Hohn MJ; Cardoso AM; Whitman WB; Söll D
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18923-7. PubMed ID: 17142313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins.
    Turanov AA; Lobanov AV; Hatfield DL; Gladyshev VN
    Nucleic Acids Res; 2013 Aug; 41(14):6952-9. PubMed ID: 23716634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA
    Vindry C; Guillin O; Mangeot PE; Ohlmann T; Chavatte L
    Cells; 2019 Jun; 8(6):. PubMed ID: 31212706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenoprotein synthesis in archaea.
    Rother M; Resch A; Wilting R; Böck A
    Biofactors; 2001; 14(1-4):75-83. PubMed ID: 11568443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.