BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 23603385)

  • 1. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles.
    Warheit DB
    Toxicol Lett; 2013 Jul; 220(2):193-204. PubMed ID: 23603385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.
    Warheit DB; Donner EM
    Food Chem Toxicol; 2015 Nov; 85():138-47. PubMed ID: 26362081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles.
    Warheit DB; Brown SC; Donner EM
    Food Chem Toxicol; 2015 Oct; 84():208-24. PubMed ID: 26341192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area.
    Warheit DB; Webb TR; Sayes CM; Colvin VL; Reed KL
    Toxicol Sci; 2006 May; 91(1):227-36. PubMed ID: 16495353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? - A review of in vivo pulmonary and oral toxicity studies - Revised 11-6-2018.
    Warheit DB; Brown SC
    Toxicol Lett; 2019 Mar; 302():42-59. PubMed ID: 30468858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management.
    Warheit DB; Reed KL; Sayes CM
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():61-7. PubMed ID: 19558235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management.
    Warheit DB; Hoke RA; Finlay C; Donner EM; Reed KL; Sayes CM
    Toxicol Lett; 2007 Jul; 171(3):99-110. PubMed ID: 17566673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats.
    Donner EM; Myhre A; Brown SC; Boatman R; Warheit DB
    Regul Toxicol Pharmacol; 2016 Feb; 74():64-74. PubMed ID: 26617408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.
    Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity.
    Warheit DB; Brock WJ; Lee KP; Webb TR; Reed KL
    Toxicol Sci; 2005 Dec; 88(2):514-24. PubMed ID: 16177240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats.
    Warheit DB; Boatman R; Brown SC
    Regul Toxicol Pharmacol; 2015 Dec; 73(3):887-96. PubMed ID: 26434710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute pulmonary effects of ultrafine particles in rats and mice.
    Oberdörster G; Finkelstein JN; Johnston C; Gelein R; Cox C; Baggs R; Elder AC
    Res Rep Health Eff Inst; 2000 Aug; (96):5-74; disc. 75-86. PubMed ID: 11205815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells.
    Periasamy VS; Athinarayanan J; Al-Hadi AM; Juhaimi FA; Mahmoud MH; Alshatwi AA
    Environ Toxicol Pharmacol; 2015 Jan; 39(1):176-86. PubMed ID: 25528408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines.
    Warheit DB; Donner EM
    Nanotoxicology; 2010 Dec; 4():409-13. PubMed ID: 20925448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles.
    Bermudez E; Mangum JB; Wong BA; Asgharian B; Hext PM; Warheit DB; Everitt JI
    Toxicol Sci; 2004 Feb; 77(2):347-57. PubMed ID: 14600271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide.
    Koivisto AJ; Lyyränen J; Auvinen A; Vanhala E; Hämeri K; Tuomi T; Jokiniemi J
    Inhal Toxicol; 2012 Oct; 24(12):839-49. PubMed ID: 23033997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks.
    Warheit DB; Sayes CM; Reed KL; Swain KA
    Pharmacol Ther; 2008 Oct; 120(1):35-42. PubMed ID: 18703086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic coatings for environmental applications.
    Allen NS; Edge M; Sandoval G; Verran J; Stratton J; Maltby J
    Photochem Photobiol; 2005; 81(2):279-90. PubMed ID: 15279507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.