These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23603709)

  • 21. Grid cells and theta as oscillatory interference: theory and predictions.
    Burgess N
    Hippocampus; 2008; 18(12):1157-74. PubMed ID: 19021256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.
    Jeewajee A; Barry C; O'Keefe J; Burgess N
    Hippocampus; 2008; 18(12):1175-85. PubMed ID: 19021251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomical Organization and Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex.
    Tang Q; Ebbesen CL; Sanguinetti-Scheck JI; Preston-Ferrer P; Gundlfinger A; Winterer J; Beed P; Ray S; Naumann R; Schmitz D; Brecht M; Burgalossi A
    J Neurosci; 2015 Sep; 35(36):12346-54. PubMed ID: 26354904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Head-Directional Tuning and Theta Modulation of Anatomically Identified Neurons in the Presubiculum.
    Tukker JJ; Tang Q; Burgalossi A; Brecht M
    J Neurosci; 2015 Nov; 35(46):15391-5. PubMed ID: 26586825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topography of head direction cells in medial entorhinal cortex.
    Giocomo LM; Stensola T; Bonnevie T; Van Cauter T; Moser MB; Moser EI
    Curr Biol; 2014 Feb; 24(3):252-62. PubMed ID: 24440398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired path integration and grid cell spatial periodicity in mice lacking GluA1-containing AMPA receptors.
    Allen K; Gil M; Resnik E; Toader O; Seeburg P; Monyer H
    J Neurosci; 2014 Apr; 34(18):6245-59. PubMed ID: 24790195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells.
    O'Keefe J; Burgess N
    Hippocampus; 2005; 15(7):853-66. PubMed ID: 16145693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.
    Tang Q; Burgalossi A; Ebbesen CL; Ray S; Naumann R; Schmidt H; Spicher D; Brecht M
    Neuron; 2014 Dec; 84(6):1191-7. PubMed ID: 25482025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade.
    Newman EL; Climer JR; Hasselmo ME
    Hippocampus; 2014 Jun; 24(6):643-55. PubMed ID: 24493379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial and memory circuits in the medial entorhinal cortex.
    Sasaki T; Leutgeb S; Leutgeb JK
    Curr Opin Neurobiol; 2015 Jun; 32():16-23. PubMed ID: 25463560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grid-like hexadirectional modulation of human entorhinal theta oscillations.
    Maidenbaum S; Miller J; Stein JM; Jacobs J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10798-10803. PubMed ID: 30282738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.
    Kispersky T; White JA; Rotstein HG
    PLoS One; 2010 Nov; 5(11):e13697. PubMed ID: 21079802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Memory, navigation and theta rhythm in the hippocampal-entorhinal system.
    Buzsáki G; Moser EI
    Nat Neurosci; 2013 Feb; 16(2):130-8. PubMed ID: 23354386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.
    Schlesiger MI; Cannova CC; Boublil BL; Hales JB; Mankin EA; Brandon MP; Leutgeb JK; Leibold C; Leutgeb S
    Nat Neurosci; 2015 Aug; 18(8):1123-32. PubMed ID: 26120964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the spatial representation system in the rat.
    Langston RF; Ainge JA; Couey JJ; Canto CB; Bjerknes TL; Witter MP; Moser EI; Moser MB
    Science; 2010 Jun; 328(5985):1576-80. PubMed ID: 20558721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.
    Navratilova Z; Giocomo LM; Fellous JM; Hasselmo ME; McNaughton BL
    Hippocampus; 2012 Apr; 22(4):772-89. PubMed ID: 21484936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
    Winter SS; Mehlman ML; Clark BJ; Taube JS
    Curr Biol; 2015 Oct; 25(19):2493-502. PubMed ID: 26387719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Place cells, grid cells, and the brain's spatial representation system.
    Moser EI; Kropff E; Moser MB
    Annu Rev Neurosci; 2008; 31():69-89. PubMed ID: 18284371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcircuits of functionally identified neurons in the rat medial entorhinal cortex.
    Burgalossi A; Herfst L; von Heimendahl M; Förste H; Haskic K; Schmidt M; Brecht M
    Neuron; 2011 May; 70(4):773-86. PubMed ID: 21609831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.