These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23603772)

  • 41. Cadmium availability in soil and retention in oak roots: potential for phytostabilization.
    Domínguez MT; Madrid F; Marañón T; Murillo JM
    Chemosphere; 2009 Jul; 76(4):480-6. PubMed ID: 19375778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants.
    Muhammad I; Puschenreiter M; Wenzel WW
    Sci Total Environ; 2012 Feb; 416():490-500. PubMed ID: 22177029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils.
    Wei Y; Zheng X; Shohag MJI; Gu M
    Int J Environ Res Public Health; 2017 Aug; 14(9):. PubMed ID: 28850097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils.
    Wu S; Shen C; Yang Z; Lin B; Yuan J
    Int J Phytoremediation; 2016 Nov; 18(11):1148-54. PubMed ID: 27348198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum Nigrum L. Through Interplant with Low Accumulation Welsh Onion.
    Wang S; Wei S; Ji D; Bai J
    Int J Phytoremediation; 2015; 17(9):879-84. PubMed ID: 25581317
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The immobilization, plant uptake and translocation of cadmium in a soil-pakchoi (Brassica chinensis L.) system amended with various sugarcane bagasse-based materials.
    Liu G; Dai Z; Tang C; Xu J
    Environ Pollut; 2022 Oct; 311():119946. PubMed ID: 35977642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toxicological effects of single and joint sulfamethazine and cadmium stress in soil on pakchoi (Brassica chinensis L.).
    Zhou C; Ma Q; Li S; Zhu M; Xia Z; Yu W
    Chemosphere; 2021 Jan; 263():128296. PubMed ID: 33297238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Transfer characteristics of cadmium in soil-vegetable-insect food chain].
    Ding P; Zhuang P; Li ZA; Xia HP; Tai YP; Lu HP
    Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3116-22. PubMed ID: 23431799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil.
    Sheng X; He L; Wang Q; Ye H; Jiang C
    J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils.
    Peng KJ; Luo CL; Chen YH; Wang GP; Li XD; Shen ZG
    Bull Environ Contam Toxicol; 2009 Aug; 83(2):260-4. PubMed ID: 19290449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.
    Ok YS; Usman AR; Lee SS; Abd El-Azeem SA; Choi B; Hashimoto Y; Yang JE
    Chemosphere; 2011 Oct; 85(4):677-82. PubMed ID: 21764102
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment.
    Jiang C; Sun H; Sun T; Zhang Q; Zhang Y
    J Hazard Mater; 2009 Aug; 167(1-3):1170-7. PubMed ID: 19272704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil.
    Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P
    Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Abscisic acid-generating bacteria can reduce Cd concentration in pakchoi grown in Cd-contaminated soil.
    Pan W; Lu Q; Xu QR; Zhang RR; Li HY; Yang YH; Liu HJ; Du ST
    Ecotoxicol Environ Saf; 2019 Aug; 177():100-107. PubMed ID: 30974243
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.
    Lin D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation.
    Catherine S; Christophe S; Louis MJ
    Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intercropping affects the physiology and cadmium absorption of pakchoi, lettuce, and radish seedlings.
    Liang L; Li X; Li H; Peng X; Zhang R; Tang W; Dong Y; Tang Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4744-4753. PubMed ID: 35972656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil.
    Zeng WA; Li F; Zhou H; Qin XL; Zou ZJ; Tian T; Zeng M; Liao BH
    J Environ Biol; 2016 Jan; 37(1):163-8. PubMed ID: 26930875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.