These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 2360385)

  • 21. Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate.
    Cayetanot F; Van Someren EJ; Perret M; Aujard F
    J Biol Rhythms; 2005 Oct; 20(5):461-9. PubMed ID: 16267385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The possible mechanisms of the participation of the central cholinoreactive systems in regulating spontaneous motor activity in the early ontogeny of rats].
    Kuznetsov SV
    Zh Evol Biokhim Fiziol; 1994; 30(2):217-24. PubMed ID: 7817657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Changes in circadian sleep-wake and rest-activity rhythms during different phases of menstrual cycle].
    Liu HY; Bao AM; Zhou JN; Liu RY
    Sheng Li Xue Bao; 2005 Jun; 57(3):389-94. PubMed ID: 15968438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered circadian periodicities in oral temperature and mood in men on an 18-hour work/rest cycle during a nuclear submarine patrol.
    Naitoh P; Beare AN; Biersner RJ; Englund CE
    Int J Chronobiol; 1983; 8(3):149-73. PubMed ID: 6862697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris.
    Brown ER; Piscopo S; De Stefano R; Giuditta A
    Behav Brain Res; 2006 Sep; 172(2):355-9. PubMed ID: 16797736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lesions of suprachiasmatic nucleus efferents selectively affect rest-activity rhythm.
    Abrahamson EE; Moore RY
    Mol Cell Endocrinol; 2006 Jun; 252(1-2):46-56. PubMed ID: 16793198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica.
    Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer's dementia.
    Hatfield CF; Herbert J; van Someren EJ; Hodges JR; Hastings MH
    Brain; 2004 May; 127(Pt 5):1061-74. PubMed ID: 14998915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Intra-circadian neurophysiologic characteristics of the sleep-wakefulness cycle of the white rat].
    Bogoslovskiĭ MM; Karmanova IG; Piskareva TV
    Fiziol Zh SSSR Im I M Sechenova; 1987 Mar; 73(3):338-46. PubMed ID: 3582694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The age-related inhibition of motor excitation of the spinal cord in the early postnatal ontogeny of rats].
    Bursian AV; Semenova IuO
    Zh Evol Biokhim Fiziol; 1995; 31(4):423-9. PubMed ID: 8779283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of hindbrain structures on autogenous periodic motor activity in the rat pup].
    Elshina MA; Bursian AV
    Zh Evol Biokhim Fiziol; 1985; 21(4):384-9. PubMed ID: 4050213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of scheduled forced wheel activity on body weight in male F344 rats undergoing chronic circadian desynchronization.
    Tsai LL; Tsai YC
    Int J Obes (Lond); 2007 Sep; 31(9):1368-77. PubMed ID: 17356527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor activity rhythms of forced desynchronized rats subjected to restricted feeding.
    Anglès-Pujolràs M; Chiesa JJ; Díez-Noguera A; Cambras T
    Physiol Behav; 2006 Jun; 88(1-2):30-8. PubMed ID: 16630636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The parameters of grooming in the ontogeny of rats].
    Lepekhina LM
    Biull Eksp Biol Med; 1993 Aug; 116(8):117-9. PubMed ID: 8274673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Characteristics of human sleep, circadian periodicity of physiological functions and of work capacity indices in the 1st 24 hours after the transition from an altered to a usual sleep and wakefulness cycle].
    Litsov AN
    Kosm Biol Aviakosm Med; 1982; 16(3):8-13. PubMed ID: 7098419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. European isolation and confinement study. Twenty-four hour rhythm of rest/activity and sleep/wakefulness: comparison of subjective and objective measures.
    Tobler I; Borbély AA
    Adv Space Biol Med; 1993; 3():163-83. PubMed ID: 8124502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An inbred lineage of djungarian hamsters with a strongly attenuated ability to synchronize.
    Weinert D; Schottner K
    Chronobiol Int; 2007; 24(6):1065-79. PubMed ID: 18075799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Diurnal periodicity of wakefulness and sleep in the catfish Ictalurus nebulosus].
    Titkov ES
    Zh Evol Biokhim Fiziol; 1976; 12(4):335-40. PubMed ID: 988695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of estrus cycle and ageing on activity patterns in two inbred mouse strains.
    Kopp C; Ressel V; Wigger E; Tobler I
    Behav Brain Res; 2006 Feb; 167(1):165-74. PubMed ID: 16214232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian rhythms of locomotor activity in the subterranean Mashona mole rat, Cryptomys darlingi.
    Vasicek CA; Oosthuizen MK; Cooper HM; Bennett NC
    Physiol Behav; 2005 Feb; 84(2):181-91. PubMed ID: 15708770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.