BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23604069)

  • 1. Activity recognition using a single accelerometer placed at the wrist or ankle.
    Mannini A; Intille SS; Rosenberger M; Sabatini AM; Haskell W
    Med Sci Sports Exerc; 2013 Nov; 45(11):2193-203. PubMed ID: 23604069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity Recognition in Youth Using Single Accelerometer Placed at Wrist or Ankle.
    Mannini A; Rosenberger M; Haskell WL; Sabatini AM; Intille SS
    Med Sci Sports Exerc; 2017 Apr; 49(4):801-812. PubMed ID: 27820724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity.
    Zhou SM; Hill RA; Morgan K; Stratton G; Gravenor MB; Bijlsma G; Brophy S
    BMJ Open; 2015 May; 5(5):e007447. PubMed ID: 25968000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for activity recognition: hip versus wrist data.
    Trost SG; Zheng Y; Wong WK
    Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Accelerometry Methods for Estimating Physical Activity.
    Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D
    Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using accelerometry to classify physical activity intensity in older adults: What is the optimal wear-site?
    Duncan MJ; Rowlands A; Lawson C; Leddington Wright S; Hill M; Morris M; Eyre E; Tallis J
    Eur J Sport Sci; 2020 Sep; 20(8):1131-1139. PubMed ID: 31726952
    [No Abstract]   [Full Text] [Related]  

  • 18. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.
    Rhudy MB; Mahoney JM
    J Med Eng Technol; 2018 Apr; 42(3):236-243. PubMed ID: 29846134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors.
    Debache I; Jeantet L; Chevallier D; Bergouignan A; Sueur C
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living.
    Ozemek C; Kirschner MM; Wilkerson BS; Byun W; Kaminsky LA
    Physiol Meas; 2014 Feb; 35(2):129-38. PubMed ID: 24399138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.