These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 23604069)
1. Activity recognition using a single accelerometer placed at the wrist or ankle. Mannini A; Intille SS; Rosenberger M; Sabatini AM; Haskell W Med Sci Sports Exerc; 2013 Nov; 45(11):2193-203. PubMed ID: 23604069 [TBL] [Abstract][Full Text] [Related]
2. Performance of Activity Classification Algorithms in Free-Living Older Adults. Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129 [TBL] [Abstract][Full Text] [Related]
3. Activity Recognition in Youth Using Single Accelerometer Placed at Wrist or Ankle. Mannini A; Rosenberger M; Haskell WL; Sabatini AM; Intille SS Med Sci Sports Exerc; 2017 Apr; 49(4):801-812. PubMed ID: 27820724 [TBL] [Abstract][Full Text] [Related]
4. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275 [TBL] [Abstract][Full Text] [Related]
5. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
7. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification. Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126 [TBL] [Abstract][Full Text] [Related]
8. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154 [TBL] [Abstract][Full Text] [Related]
9. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. Zhou SM; Hill RA; Morgan K; Stratton G; Gravenor MB; Bijlsma G; Brophy S BMJ Open; 2015 May; 5(5):e007447. PubMed ID: 25968000 [TBL] [Abstract][Full Text] [Related]
10. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities. Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889 [TBL] [Abstract][Full Text] [Related]
11. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510 [TBL] [Abstract][Full Text] [Related]
12. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data. Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107 [TBL] [Abstract][Full Text] [Related]
13. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
14. Machine learning for activity recognition: hip versus wrist data. Trost SG; Zheng Y; Wong WK Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Accelerometry Methods for Estimating Physical Activity. Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355 [TBL] [Abstract][Full Text] [Related]
16. Classifier Personalization for Activity Recognition Using Wrist Accelerometers. Mannini A; Intille SS IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588 [TBL] [Abstract][Full Text] [Related]
17. Using accelerometry to classify physical activity intensity in older adults: What is the optimal wear-site? Duncan MJ; Rowlands A; Lawson C; Leddington Wright S; Hill M; Morris M; Eyre E; Tallis J Eur J Sport Sci; 2020 Sep; 20(8):1131-1139. PubMed ID: 31726952 [No Abstract] [Full Text] [Related]
18. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals. Rhudy MB; Mahoney JM J Med Eng Technol; 2018 Apr; 42(3):236-243. PubMed ID: 29846134 [TBL] [Abstract][Full Text] [Related]
19. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors. Debache I; Jeantet L; Chevallier D; Bergouignan A; Sueur C Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486068 [TBL] [Abstract][Full Text] [Related]
20. Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living. Ozemek C; Kirschner MM; Wilkerson BS; Byun W; Kaminsky LA Physiol Meas; 2014 Feb; 35(2):129-38. PubMed ID: 24399138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]