BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23604474)

  • 1. The epigenetic language of circadian clocks.
    Sahar S; Sassone-Corsi P
    Handb Exp Pharmacol; 2013; (217):29-44. PubMed ID: 23604474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythms and memory formation: regulation by chromatin remodeling.
    Sahar S; Sassone-Corsi P
    Front Mol Neurosci; 2012; 5():37. PubMed ID: 22470318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The time of metabolism: NAD+, SIRT1, and the circadian clock.
    Bellet MM; Orozco-Solis R; Sahar S; Eckel-Mahan K; Sassone-Corsi P
    Cold Spring Harb Symp Quant Biol; 2011; 76():31-8. PubMed ID: 22179986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1.
    Aguilar-Arnal L; Katada S; Orozco-Solis R; Sassone-Corsi P
    Nat Struct Mol Biol; 2015 Apr; 22(4):312-8. PubMed ID: 25751424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin remodeling and circadian control: master regulator CLOCK is an enzyme.
    Grimaldi B; Nakahata Y; Sahar S; Kaluzova M; Gauthier D; Pham K; Patel N; Hirayama J; Sassone-Corsi P
    Cold Spring Harb Symp Quant Biol; 2007; 72():105-12. PubMed ID: 18419267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies.
    Taniguchi H; Fernández AF; Setién F; Ropero S; Ballestar E; Villanueva A; Yamamoto H; Imai K; Shinomura Y; Esteller M
    Cancer Res; 2009 Nov; 69(21):8447-54. PubMed ID: 19861541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.
    Nakahata Y; Kaluzova M; Grimaldi B; Sahar S; Hirayama J; Chen D; Guarente LP; Sassone-Corsi P
    Cell; 2008 Jul; 134(2):329-40. PubMed ID: 18662547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1.
    Zhou B; Zhang Y; Zhang F; Xia Y; Liu J; Huang R; Wang Y; Hu Y; Wu J; Dai C; Wang H; Tu Y; Peng X; Wang Y; Zhai Q
    Hepatology; 2014 Jun; 59(6):2196-206. PubMed ID: 24442997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of circadian clock transcriptional output by CLOCK:BMAL1.
    Trott AJ; Menet JS
    PLoS Genet; 2018 Jan; 14(1):e1007156. PubMed ID: 29300726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock.
    Henriques R; Mas P
    Semin Cell Dev Biol; 2013 May; 24(5):399-406. PubMed ID: 23499867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian circadian clock and metabolism - the epigenetic link.
    Bellet MM; Sassone-Corsi P
    J Cell Sci; 2010 Nov; 123(Pt 22):3837-48. PubMed ID: 21048160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1.
    Grimaldi B; Nakahata Y; Kaluzova M; Masubuchi S; Sassone-Corsi P
    Int J Biochem Cell Biol; 2009 Jan; 41(1):81-6. PubMed ID: 18817890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfect timing: epigenetic regulation of the circadian clock.
    Ripperger JA; Merrow M
    FEBS Lett; 2011 May; 585(10):1406-11. PubMed ID: 21536041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions.
    Ripperger JA; Schibler U
    Nat Genet; 2006 Mar; 38(3):369-74. PubMed ID: 16474407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLOCK-mediated acetylation of BMAL1 controls circadian function.
    Hirayama J; Sahar S; Grimaldi B; Tamaru T; Takamatsu K; Nakahata Y; Sassone-Corsi P
    Nature; 2007 Dec; 450(7172):1086-90. PubMed ID: 18075593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal chromatin dynamics - A telltale of circadian epigenetic gene regulation.
    Singh K; Jha NK; Thakur A
    Life Sci; 2019 Mar; 221():377-391. PubMed ID: 30721705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling circadian rhythms of metabolism and chromatin remodelling.
    Masri S; Orozco-Solis R; Aguilar-Arnal L; Cervantes M; Sassone-Corsi P
    Diabetes Obes Metab; 2015 Sep; 17 Suppl 1(0 1):17-22. PubMed ID: 26332964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
    Katada S; Sassone-Corsi P
    Nat Struct Mol Biol; 2010 Dec; 17(12):1414-21. PubMed ID: 21113167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of transcriptional regulatory elements required for the Mup2 expression in circadian clock mutant mice.
    Cho YH; Kim D; Choi I; Bae K
    Biochem Biophys Res Commun; 2011 Jul; 410(4):834-40. PubMed ID: 21703244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock.
    Perales M; Más P
    Plant Cell; 2007 Jul; 19(7):2111-23. PubMed ID: 17616736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.