BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23604490)

  • 1. Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities.
    Liu H; Xu CT; Lindgren D; Xie H; Thomas D; Gundlach C; Andersson-Engels S
    Nanoscale; 2013 Jun; 5(11):4770-5. PubMed ID: 23604490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalised analytical model of the transition power densities of the upconversion luminescence and quantum yield.
    Matias JS; Komolibus K; Kho KW; Konugolu-Venkata-Sekar S; Andersson-Engels S
    Nanoscale Adv; 2023 Jun; 5(12):3279-3286. PubMed ID: 37325538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam-profile compensation for quantum yield characterisation of Yb-Tm codoped upconverting nanoparticles emitting at 474 nm, 650 nm and 804 nm.
    Matias JS; Komolibus K; Kiang WK; Konugolu-Venkata-Sekar S; Andersson-Engels S
    Nanoscale; 2024 Feb; 16(7):3641-3649. PubMed ID: 38276985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute upconversion quantum yields of blue-emitting LiYF
    Meijer MS; Rojas-Gutierrez PA; Busko D; Howard IA; Frenzel F; Würth C; Resch-Genger U; Richards BS; Turshatov A; Capobianco JA; Bonnet S
    Phys Chem Chem Phys; 2018 Sep; 20(35):22556-22562. PubMed ID: 30155527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of relative beam-profile-compensated quantum yield of upconverting nanoparticles over a wide dynamic range of power densities.
    Matias JS; Komolibus K; Konugolu-Venkata-Sekar S; Andersson-Engels S
    Nanoscale; 2022 Feb; 14(6):2230-2237. PubMed ID: 35080228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield.
    Zhan Q; He S; Qian J; Cheng H; Cai F
    Theranostics; 2013; 3(5):306-16. PubMed ID: 23650478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure.
    Li X; Zhang F; Zhao D
    Chem Soc Rev; 2015 Mar; 44(6):1346-78. PubMed ID: 25052250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles.
    Boyer JC; van Veggel FC
    Nanoscale; 2010 Aug; 2(8):1417-9. PubMed ID: 20820726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-variable compensated quantum yield measurements of upconverting nanoparticles with high dynamic range: a systematic approach.
    Konugolu Venkata Sekar S; Matias JS; Dumlupinar G; Niemitz L; Mousavi M; Komolibus K; Andersson-Engels S
    Opt Express; 2022 May; 30(10):16572-16584. PubMed ID: 36221497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-dependent upconversion quantum yield of NaYF
    Kaiser M; Würth C; Kraft M; Hyppänen I; Soukka T; Resch-Genger U
    Nanoscale; 2017 Jul; 9(28):10051-10058. PubMed ID: 28686275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability.
    Wilhelm S; Kaiser M; Würth C; Heiland J; Carrillo-Carrion C; Muhr V; Wolfbeis OS; Parak WJ; Resch-Genger U; Hirsch T
    Nanoscale; 2015 Jan; 7(4):1403-10. PubMed ID: 25503253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of multi-photon upconversion emissions for fluorescence diffuse optical imaging.
    Liu H; Xu CT; Andersson-Engels S
    Opt Express; 2014 Jul; 22(15):17782-90. PubMed ID: 25089399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power.
    Liu H; Xu CT; Dumlupinar G; Jensen OB; Andersen PE; Andersson-Engels S
    Nanoscale; 2013 Oct; 5(20):10034-40. PubMed ID: 23963319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral characterization of LiYbF
    Skripka A; Cheng T; Jones CMS; Marin R; Marques-Hueso J; Vetrone F
    Nanoscale; 2020 Sep; 12(33):17545-17554. PubMed ID: 32812995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+),Er(3+) nanoparticles: Maxwell versus Förster.
    Lu D; Cho SK; Ahn S; Brun L; Summers CJ; Park W
    ACS Nano; 2014 Aug; 8(8):7780-92. PubMed ID: 25003209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles.
    Würth C; Fischer S; Grauel B; Alivisatos AP; Resch-Genger U
    J Am Chem Soc; 2018 Apr; 140(14):4922-4928. PubMed ID: 29570283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles.
    Xu CT; Svenmarker P; Liu H; Wu X; Messing ME; Wallenberg LR; Andersson-Engels S
    ACS Nano; 2012 Jun; 6(6):4788-95. PubMed ID: 22568960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF
    Zou Q; Huang P; Zheng W; You W; Li R; Tu D; Xu J; Chen X
    Nanoscale; 2017 May; 9(19):6521-6528. PubMed ID: 28466931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis.
    Herter B; Wolf S; Fischer S; Gutmann J; Bläsi B; Goldschmidt JC
    Opt Express; 2013 Sep; 21 Suppl 5():A883-900. PubMed ID: 24104583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beam-profile-compensated quantum yield measurements of upconverting nanoparticles.
    Mousavi M; Thomasson B; Li M; Kraft M; Würth C; Resch-Genger U; Andersson-Engels S
    Phys Chem Chem Phys; 2017 Aug; 19(33):22016-22022. PubMed ID: 28791337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.