BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23604525)

  • 1. Characterization of the biotransformation pathways of clomiphene, tamoxifen and toremifene as assessed by LC-MS/(MS) following in vitro and excretion studies.
    Mazzarino M; Biava M; de la Torre X; Fiacco I; Botrè F
    Anal Bioanal Chem; 2013 Jun; 405(16):5467-87. PubMed ID: 23604525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition.
    Gallemann D; Wimmer E; Höfer CC; Freisleben A; Fluck M; Ladstetter B; Dolgos H
    Drug Metab Dispos; 2010 Jun; 38(6):905-16. PubMed ID: 20219851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of liquid chromatography coupled to data-independent acquisition mass spectrometry for the metabolic profiling of N-ethyl heptedrone.
    Mazzarino M; Camuto C; Comunità F; de la Torre X; Stacchini C; Botrè F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Nov; 1185():122989. PubMed ID: 34678705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative metabolic study between two selective estrogen receptor modulators, toremifene and tamoxifen, in human liver microsomes.
    Watanabe M; Watanabe N; Maruyama S; Kawashiro T
    Drug Metab Pharmacokinet; 2015 Oct; 30(5):325-33. PubMed ID: 26423799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated, high-throughput, 384 well Cytochrome P450 cocktail IC50 assay using a rapid resolution LC-MS/MS end-point.
    Youdim KA; Lyons R; Payne L; Jones BC; Saunders K
    J Pharm Biomed Anal; 2008 Sep; 48(1):92-9. PubMed ID: 18584988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective differences in the cytochrome P450-dependent dealkylation and demethylenation of N-methyl-benzodioxolyl-butanamine (MBDB, Eden) enantiomers.
    Meyer MR; Peters FT; Maurer HH
    Biochem Pharmacol; 2009 Jun; 77(11):1725-34. PubMed ID: 19428327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mass spectrometric approach for the study of the metabolism of clomiphene, tamoxifen and toremifene by liquid chromatography time-of-flight spectroscopy.
    Mazzarino M; Fiacco I; de la Torre X; Botrè F
    Eur J Mass Spectrom (Chichester); 2008; 14(3):171-80. PubMed ID: 18708697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometric characterization of toremifene metabolites in human urine by liquid chromatography-tandem mass spectrometry with different scan modes.
    Lu J; Wang X; Xu Y; Dong Y; Yang S; Wu Y; Qin Y; Wu M
    Analyst; 2011 Feb; 136(3):467-72. PubMed ID: 21113546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation and detectability of the new psychoactive substances N,N-diallyltryptamine (DALT) derivatives 5-fluoro-DALT, 7-methyl-DALT, and 5,6-methylenedioxy-DALT in urine using GC-MS, LC-MS
    Michely JA; Brandt SD; Meyer MR; Maurer HH
    Anal Bioanal Chem; 2017 Feb; 409(6):1681-1695. PubMed ID: 27933361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the phase I and phase II metabolic profile of tolvaptan by in vitro studies and liquid chromatography-mass spectrometry profiling: Relevance to doping control analysis.
    Mazzarino M; Buccilli V; de la Torre X; Fiacco I; Palermo A; Ughi D; Botrè F
    J Pharm Biomed Anal; 2017 Oct; 145():555-568. PubMed ID: 28759864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite.
    Kazui M; Nishiya Y; Ishizuka T; Hagihara K; Farid NA; Okazaki O; Ikeda T; Kurihara A
    Drug Metab Dispos; 2010 Jan; 38(1):92-9. PubMed ID: 19812348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometric characterization of urinary toremifene metabolites for doping control analyses.
    Gómez C; Pozo OJ; Diaz R; Sancho JV; Vilaroca E; Salvador JP; Marco MP; Hernandez F; Segura J; Ventura R
    J Chromatogr A; 2011 Jul; 1218(29):4727-37. PubMed ID: 21683367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver.
    Coller JK; Krebsfaenger N; Klein K; Endrizzi K; Wolbold R; Lang T; Nüssler A; Neuhaus P; Zanger UM; Eichelbaum M; Mürdter TE
    Br J Clin Pharmacol; 2002 Aug; 54(2):157-67. PubMed ID: 12207635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6.
    Desta Z; Ward BA; Soukhova NV; Flockhart DA
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1062-75. PubMed ID: 15159443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes.
    Ramírez J; Innocenti F; Schuetz EG; Flockhart DA; Relling MV; Santucci R; Ratain MJ
    Drug Metab Dispos; 2004 Sep; 32(9):930-6. PubMed ID: 15319333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes.
    Jiang R; Yamaori S; Takeda S; Yamamoto I; Watanabe K
    Life Sci; 2011 Aug; 89(5-6):165-70. PubMed ID: 21704641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro metabolism of BIIB021, an inhibitor of heat shock protein 90, in liver microsomes and hepatocytes of rats, dogs, and humans and recombinant human cytochrome P450 isoforms.
    Xu L; Woodward C; Khan S; Prakash C
    Drug Metab Dispos; 2012 Apr; 40(4):680-93. PubMed ID: 22217465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of irsogladine on P450-isoform specific activities in human hepatic microsomes.
    Nakamura A; Tougou K; Kitazumi H; Yamada T; Honjou K; Nonaka K; Mukai H
    Arzneimittelforschung; 2006; 56(7):547-52. PubMed ID: 16927538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of CYP2C in the in vitro bioactivation of the contraceptive steroid desogestrel.
    Gentile DM; Verhoeven CH; Shimada T; Back DJ
    J Pharmacol Exp Ther; 1998 Dec; 287(3):975-82. PubMed ID: 9864282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New cathinone-derived designer drugs 3-bromomethcathinone and 3-fluoromethcathinone: studies on their metabolism in rat urine and human liver microsomes using GC-MS and LC-high-resolution MS and their detectability in urine.
    Meyer MR; Vollmar C; Schwaninger AE; Wolf E; Maurer HH
    J Mass Spectrom; 2012 Feb; 47(2):253-62. PubMed ID: 22359337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.