These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 23604722)
21. Ramelteon Ameliorates LPS-Induced Hyperpermeability of the Blood-Brain Barrier (BBB) by Activating Nrf2. Liu Y; Wang L; Du N; Yin X; Shao H; Yang L Inflammation; 2021 Oct; 44(5):1750-1761. PubMed ID: 33876343 [TBL] [Abstract][Full Text] [Related]
22. Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Boveri M; Kinsner A; Berezowski V; Lenfant AM; Draing C; Cecchelli R; Dehouck MP; Hartung T; Prieto P; Bal-Price A Neuroscience; 2006; 137(4):1193-209. PubMed ID: 16343789 [TBL] [Abstract][Full Text] [Related]
23. Wip1 regulates blood-brain barrier function and neuro-inflammation induced by lipopolysaccharide via the sonic hedgehog signaling signaling pathway. Zhen H; Zhao L; Ling Z; Kuo L; Xue X; Feng J Mol Immunol; 2018 Jan; 93():31-37. PubMed ID: 29128669 [TBL] [Abstract][Full Text] [Related]
24. Astragaloside IV protects blood-brain barrier integrity from LPS-induced disruption via activating Nrf2 antioxidant signaling pathway in mice. Li H; Wang P; Huang F; Jin J; Wu H; Zhang B; Wang Z; Shi H; Wu X Toxicol Appl Pharmacol; 2018 Feb; 340():58-66. PubMed ID: 29294303 [TBL] [Abstract][Full Text] [Related]
25. Cilostazol attenuates ischemia-reperfusion-induced blood-brain barrier dysfunction enhanced by advanced glycation endproducts via transforming growth factor-β1 signaling. Takeshita T; Nakagawa S; Tatsumi R; So G; Hayashi K; Tanaka K; Deli MA; Nagata I; Niwa M Mol Cell Neurosci; 2014 May; 60():1-9. PubMed ID: 24472843 [TBL] [Abstract][Full Text] [Related]
26. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Lee HS; Namkoong K; Kim DH; Kim KJ; Cheong YH; Kim SS; Lee WB; Kim KY Microvasc Res; 2004 Nov; 68(3):231-8. PubMed ID: 15501242 [TBL] [Abstract][Full Text] [Related]
28. In vitro models of the blood-brain barrier. Czupalla CJ; Liebner S; Devraj K Methods Mol Biol; 2014; 1135():415-37. PubMed ID: 24510883 [TBL] [Abstract][Full Text] [Related]
29. Transient alterations of the blood-brain barrier tight junction and receptor potential channel gene expression by chlorpyrifos. Li W; Ehrich M J Appl Toxicol; 2013 Oct; 33(10):1187-91. PubMed ID: 22611033 [TBL] [Abstract][Full Text] [Related]
30. An in vitro study of m-dinitrobenzene toxicity on the cellular components of the blood-brain barrier, astrocytes and endothelial cells. Romero IA; Ray DE; Chan MW; Abbott NJ Toxicol Appl Pharmacol; 1996 Jul; 139(1):94-101. PubMed ID: 8685913 [TBL] [Abstract][Full Text] [Related]
31. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. Stamatovic SM; Shakui P; Keep RF; Moore BB; Kunkel SL; Van Rooijen N; Andjelkovic AV J Cereb Blood Flow Metab; 2005 May; 25(5):593-606. PubMed ID: 15689955 [TBL] [Abstract][Full Text] [Related]
32. Murine in vitro model of the blood-brain barrier for evaluating drug transport. Shayan G; Choi YS; Shusta EV; Shuler ML; Lee KH Eur J Pharm Sci; 2011 Jan; 42(1-2):148-55. PubMed ID: 21078386 [TBL] [Abstract][Full Text] [Related]
34. Progesterone attenuates thrombin-induced endothelial barrier disruption in the brain endothelial cell line bEnd.3: The role of tight junction proteins and the endothelial protein C receptor. Hun Lee J; Won S; Stein DG Brain Res; 2015 Jul; 1613():73-80. PubMed ID: 25862570 [TBL] [Abstract][Full Text] [Related]
35. Activation of AMPK improves lipopolysaccharide-induced dysfunction of the blood-brain barrier in mice. Yu HY; Cai YB; Liu Z Brain Inj; 2015; 29(6):777-84. PubMed ID: 25794165 [TBL] [Abstract][Full Text] [Related]
36. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Cohen-Kashi Malina K; Cooper I; Teichberg VI Brain Res; 2009 Aug; 1284():12-21. PubMed ID: 19501061 [TBL] [Abstract][Full Text] [Related]
37. Differential susceptibility of cerebral and cerebellar murine brain microvascular endothelial cells to loss of barrier properties in response to inflammatory stimuli. Silwedel C; Förster C J Neuroimmunol; 2006 Oct; 179(1-2):37-45. PubMed ID: 16884785 [TBL] [Abstract][Full Text] [Related]
38. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. Nagasawa K; Chiba H; Fujita H; Kojima T; Saito T; Endo T; Sawada N J Cell Physiol; 2006 Jul; 208(1):123-32. PubMed ID: 16547974 [TBL] [Abstract][Full Text] [Related]
39. Establishing Co-Culture Blood-Brain Barrier Models for Different Neurodegeneration Conditions to Understand Its Effect on BBB Integrity. Park JS; Choe K; Khan A; Jo MH; Park HY; Kang MH; Park TJ; Kim MO Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982361 [TBL] [Abstract][Full Text] [Related]
40. Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Minagar A; Long A; Ma T; Jackson TH; Kelley RE; Ostanin DV; Sasaki M; Warren AC; Jawahar A; Cappell B; Alexander JS Endothelium; 2003; 10(6):299-307. PubMed ID: 14741845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]