These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23606258)

  • 1. Identification of thioredoxin target protein networks in cardiac tissues of a transgenic mouse.
    Fu C; Liu T; Parrott AM; Li H
    Methods Mol Biol; 2013; 1005():181-97. PubMed ID: 23606258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of thioredoxin target protein networks in mouse.
    Fu C; Wu C; Liu T; Ago T; Zhai P; Sadoshima J; Li H
    Mol Cell Proteomics; 2009 Jul; 8(7):1674-87. PubMed ID: 19416943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets.
    Wu C; Parrott AM; Liu T; Beuve A; Li H
    Methods; 2013 Aug; 62(2):151-60. PubMed ID: 23428400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach.
    Wu C; Parrott AM; Liu T; Jain MR; Yang Y; Sadoshima J; Li H
    J Proteomics; 2011 Oct; 74(11):2498-509. PubMed ID: 21704743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of thioredoxin h-reducible disulphides in proteomes by differential labelling of cysteines: insight into recognition and regulation of proteins in barley seeds by thioredoxin h.
    Maeda K; Finnie C; Svensson B
    Proteomics; 2005 Apr; 5(6):1634-44. PubMed ID: 15765494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif.
    Watson WH; Pohl J; Montfort WR; Stuchlik O; Reed MS; Powis G; Jones DP
    J Biol Chem; 2003 Aug; 278(35):33408-15. PubMed ID: 12816947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of thioredoxin target disulfides using isotope-coded affinity tags.
    Hägglund P; Bunkenborg J; Maeda K; Finnie C; Svensson B
    Methods Mol Biol; 2014; 1072():677-85. PubMed ID: 24136556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications.
    Chan JCY; Zhou L; Chan ECY
    Curr Protoc Protein Sci; 2015 Nov; 82():23.2.1-23.2.19. PubMed ID: 26521713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags.
    Hägglund P; Bunkenborg J; Maeda K; Svensson B
    J Proteome Res; 2008 Dec; 7(12):5270-6. PubMed ID: 19367707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry.
    Kozarova A; Sliskovic I; Mutus B; Simon ES; Andrews PC; Vacratsis PO
    J Am Soc Mass Spectrom; 2007 Feb; 18(2):260-9. PubMed ID: 17074504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols.
    Sethuraman M; McComb ME; Heibeck T; Costello CE; Cohen RA
    Mol Cell Proteomics; 2004 Mar; 3(3):273-8. PubMed ID: 14726493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins.
    Nakao LS; Everley RA; Marino SM; Lo SM; de Souza LE; Gygi SP; Gladyshev VN
    J Biol Chem; 2015 Feb; 290(9):5685-95. PubMed ID: 25561728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT.
    Gu L; Evans AR; Robinson RA
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):615-30. PubMed ID: 25588721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of isobaric and isotopic labeling in quantitative plant proteomics.
    Nogueira FC; Palmisano G; Schwämmle V; Campos FA; Larsen MR; Domont GB; Roepstorff P
    J Proteome Res; 2012 May; 11(5):3046-52. PubMed ID: 22452248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis.
    Smolka MB; Zhou H; Purkayastha S; Aebersold R
    Anal Biochem; 2001 Oct; 297(1):25-31. PubMed ID: 11567524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1.
    Kylarova S; Kosek D; Petrvalska O; Psenakova K; Man P; Vecer J; Herman P; Obsilova V; Obsil T
    FEBS J; 2016 Oct; 283(20):3821-3838. PubMed ID: 27588831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1.
    Huang C; Alapa M; Shu P; Nagarajan N; Wu C; Sadoshima J; Kholodovych V; Li H; Beuve A
    J Biol Chem; 2017 Sep; 292(35):14362-14370. PubMed ID: 28659344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62.
    Wang X; Ling S; Zhao D; Sun Q; Li Q; Wu F; Nie J; Qu L; Wang B; Shen X; Bai Y; Li Y; Li Y
    Antioxid Redox Signal; 2010 Sep; 13(5):565-73. PubMed ID: 20218863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos.
    Li Z; Adams RM; Chourey K; Hurst GB; Hettich RL; Pan C
    J Proteome Res; 2012 Mar; 11(3):1582-90. PubMed ID: 22188275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.