These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23606436)

  • 1. Band gap engineering of BN sheets by interlayer dihydrogen bonding and electric field control.
    Tang Q; Zhou Z; Shen P; Chen Z
    Chemphyschem; 2013 Jun; 14(9):1787-92. PubMed ID: 23606436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field.
    Tang Q; Bao J; Li Y; Zhou Z; Chen Z
    Nanoscale; 2014 Aug; 6(15):8624-34. PubMed ID: 24824079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers via heteronuclear dihydrogen bonding and electric field control.
    Liang Q; Jiang J; Meng R; Ye H; Tan C; Yang Q; Sun X; Yang D; Chen X
    Phys Chem Chem Phys; 2016 Jun; 18(24):16386-95. PubMed ID: 27265511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.
    Tang S; Yu J; Liu L
    Phys Chem Chem Phys; 2013 Apr; 15(14):5067-77. PubMed ID: 23450178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets.
    Zhang Z; Guo W; Yakobson BI
    Nanoscale; 2013 Jul; 5(14):6381-7. PubMed ID: 23736767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.
    Li X; Wu X; Zeng XC; Yang J
    ACS Nano; 2012 May; 6(5):4104-12. PubMed ID: 22482995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band gap engineering of chemical vapor deposited graphene by in situ BN doping.
    Chang CK; Kataria S; Kuo CC; Ganguly A; Wang BY; Hwang JY; Huang KJ; Yang WH; Wang SB; Chuang CH; Chen M; Huang CI; Pong WF; Song KJ; Chang SJ; Guo JH; Tai Y; Tsujimoto M; Isoda S; Chen CW; Chen LC; Chen KH
    ACS Nano; 2013 Feb; 7(2):1333-41. PubMed ID: 23273110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field modulation in bilayer graphene band structure.
    Raza H; Kan EC
    J Phys Condens Matter; 2009 Mar; 21(10):102202. PubMed ID: 21817415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Modulated Band Structure Engineering in C4F Nanosheets: First-Principles Insights.
    Li Y; Pantoja BA; Chen Z
    J Chem Theory Comput; 2014 Mar; 10(3):1265-71. PubMed ID: 26580195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism.
    Zhang Z; Zeng XC; Guo W
    J Am Chem Soc; 2011 Sep; 133(37):14831-8. PubMed ID: 21834534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphane/fluorographene bilayer: considerable C-H···F-C hydrogen bonding and effective band structure engineering.
    Li Y; Li F; Chen Z
    J Am Chem Soc; 2012 Jul; 134(27):11269-75. PubMed ID: 22680070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-free Ternary BCN Nanosheets with Synergetic Effect of Band Gap Engineering and Magnetic Properties.
    Sun C; Ma F; Cai L; Wang A; Wu Y; Zhao M; Yan W; Hao X
    Sci Rep; 2017 Jul; 7(1):6617. PubMed ID: 28747727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure and electric field-induced metallization in the phase-engineered ZrX2 (X = S, Se, Te) bilayers.
    Kumar A; He H; Pandey R; Ahluwalia PK; Tankeshwar K
    Phys Chem Chem Phys; 2015 Jul; 17(29):19215-21. PubMed ID: 26133285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band gap engineering of bulk and nanosheet SnO: an insight into the interlayer Sn-Sn lone pair interactions.
    Zhou W; Umezawa N
    Phys Chem Chem Phys; 2015 Jul; 17(27):17816-20. PubMed ID: 26088037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.
    Tian X; Xu J; Wang X
    J Phys Chem B; 2010 Sep; 114(35):11377-81. PubMed ID: 20690622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable band gap in hydrogenated bilayer graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2010 Jul; 4(7):4126-30. PubMed ID: 20536219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene.
    Lin Y; Connell JW
    Nanoscale; 2012 Nov; 4(22):6908-39. PubMed ID: 23023445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and magnetic properties of substituted BN sheets: a density functional theory study.
    Zhou YG; Yang P; Wang ZG; Zu XT; Xiao HY; Sun X; Khaleel MA; Gao F
    Phys Chem Chem Phys; 2011 Apr; 13(16):7378-83. PubMed ID: 21423980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils.
    Gao Y; Ren W; Ma T; Liu Z; Zhang Y; Liu WB; Ma LP; Ma X; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5199-206. PubMed ID: 23663007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.
    Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP
    Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.