These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 23606450)
21. Hierarchically nanoperforated graphene as a high performance electrode material for ultracapacitors. Mhamane D; Suryawanshi A; Unni SM; Rode C; Kurungot S; Ogale S Small; 2013 Aug; 9(16):2801-9. PubMed ID: 23606525 [TBL] [Abstract][Full Text] [Related]
22. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. Wu XL; Wen T; Guo HL; Yang S; Wang X; Xu AW ACS Nano; 2013 Apr; 7(4):3589-97. PubMed ID: 23548083 [TBL] [Abstract][Full Text] [Related]
23. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Hou J; Cao C; Ma X; Idrees F; Xu B; Hao X; Lin W Sci Rep; 2014 Dec; 4():7260. PubMed ID: 25434348 [TBL] [Abstract][Full Text] [Related]
24. Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors. Wang D; Xu Z; Lian Y; Ban C; Zhang H J Colloid Interface Sci; 2019 Apr; 542():400-409. PubMed ID: 30771635 [TBL] [Abstract][Full Text] [Related]
25. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance. Bai S; Tan G; Li X; Zhao Q; Meng Y; Wang Y; Zhang Y; Xiao D Chem Asian J; 2016 Jun; 11(12):1828-36. PubMed ID: 27124360 [TBL] [Abstract][Full Text] [Related]
26. Coupled ultrasonication-milling synthesis of hierarchically porous carbon for high-performance supercapacitor. Yang D; Jing H; Wang Z; Li J; Hu M; Lv R; Zhang R; Chen D J Colloid Interface Sci; 2018 Oct; 528():208-224. PubMed ID: 29857252 [TBL] [Abstract][Full Text] [Related]
27. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons. Karthikeyan K; Amaresh S; Lee SN; Sun X; Aravindan V; Lee YG; Lee YS ChemSusChem; 2014 May; 7(5):1435-42. PubMed ID: 24648276 [TBL] [Abstract][Full Text] [Related]
28. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815 [TBL] [Abstract][Full Text] [Related]
29. Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. Shao R; Niu J; Liang J; Liu M; Zhang Z; Dou M; Huang Y; Wang F ACS Appl Mater Interfaces; 2017 Dec; 9(49):42797-42805. PubMed ID: 29168631 [TBL] [Abstract][Full Text] [Related]
30. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors. Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182 [TBL] [Abstract][Full Text] [Related]
31. 3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method. Zhang W; Lin H; Lin Z; Yin J; Lu H; Liu D; Zhao M ChemSusChem; 2015 Jun; 8(12):2114-22. PubMed ID: 26033894 [TBL] [Abstract][Full Text] [Related]
32. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors. Zhao X; Li M; Dong H; Liu Y; Hu H; Cai Y; Liang Y; Xiao Y; Zheng M ChemSusChem; 2017 Jun; 10(12):2626-2634. PubMed ID: 28440020 [TBL] [Abstract][Full Text] [Related]
33. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Du SH; Wang LQ; Fu XT; Chen MM; Wang CY Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820 [TBL] [Abstract][Full Text] [Related]
34. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Qu B; Chen Y; Zhang M; Hu L; Lei D; Lu B; Li Q; Wang Y; Chen L; Wang T Nanoscale; 2012 Dec; 4(24):7810-6. PubMed ID: 23147355 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Zhang Q; Han K; Li S; Li M; Li J; Ren K Nanoscale; 2018 Feb; 10(5):2427-2437. PubMed ID: 29335695 [TBL] [Abstract][Full Text] [Related]
36. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. Zuo L; Fan W; Zhang Y; Huang Y; Gao W; Liu T Nanoscale; 2017 Mar; 9(13):4445-4455. PubMed ID: 28304051 [TBL] [Abstract][Full Text] [Related]
37. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles. Kim YJ; Yang CM; Park KC; Kaneko K; Kim YA; Noguchi M; Fujino T; Oyama S; Endo M ChemSusChem; 2012 Mar; 5(3):535-41. PubMed ID: 22378623 [TBL] [Abstract][Full Text] [Related]
38. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors. Tan Z; Yang J; Liang Y; Zheng M; Hu H; Dong H; Liu Y; Xiao Y J Colloid Interface Sci; 2021 Mar; 585():778-786. PubMed ID: 33143851 [TBL] [Abstract][Full Text] [Related]
39. Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. Chaudhari NK; Chaudhari S; Yu JS ChemSusChem; 2014 Nov; 7(11):3102-11. PubMed ID: 25293370 [TBL] [Abstract][Full Text] [Related]
40. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. Shen J; Yang C; Li X; Wang G ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]