These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 23606450)
41. Porous Carbon Spheres Derived from Hemicelluloses for Supercapacitor Application. Wang Y; Lu C; Cao X; Wang Q; Yang G; Chen J Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806106 [TBL] [Abstract][Full Text] [Related]
43. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors. Chung HY; Pan GT; Hong ZY; Hsu CT; Chong S; Yang TC; Huang CM Molecules; 2020 Sep; 25(18):. PubMed ID: 32899765 [TBL] [Abstract][Full Text] [Related]
44. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors. Rusi ; Majid SR PLoS One; 2016; 11(5):e0154566. PubMed ID: 27182595 [TBL] [Abstract][Full Text] [Related]
45. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors. Gryglewicz G; Śliwak A; Béguin F ChemSusChem; 2013 Aug; 6(8):1516-22. PubMed ID: 23794416 [TBL] [Abstract][Full Text] [Related]
46. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292 [TBL] [Abstract][Full Text] [Related]
47. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. Falco C; Sieben JM; Brun N; Sevilla M; van der Mauelen T; Morallón E; Cazorla-Amorós D; Titirici MM ChemSusChem; 2013 Feb; 6(2):374-82. PubMed ID: 23319452 [TBL] [Abstract][Full Text] [Related]
48. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application. Peng H; Ma G; Sun K; Mu J; Zhang Z; Lei Z ACS Appl Mater Interfaces; 2014 Dec; 6(23):20795-803. PubMed ID: 25372656 [TBL] [Abstract][Full Text] [Related]
49. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841 [TBL] [Abstract][Full Text] [Related]
50. Nitrogen-enriched carbon spheres coupled with graphitic carbon nitride nanosheets for high performance supercapacitors. Zhu J; Kong L; Shen X; Zhou H; Zhu G; Ji Z; Xu K; Shah SA Dalton Trans; 2018 Jul; 47(29):9724-9732. PubMed ID: 29979457 [TBL] [Abstract][Full Text] [Related]
51. Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors. Yang V; Arumugam Senthil R; Pan J; Rajesh Kumar T; Sun Y; Liu X J Colloid Interface Sci; 2020 Nov; 579():347-356. PubMed ID: 32610207 [TBL] [Abstract][Full Text] [Related]
52. Hierarchical Porous Carbon Materials Derived from Sheep Manure for High-Capacity Supercapacitors. Zhang C; Zhu X; Cao M; Li M; Li N; Lai L; Zhu J; Wei D ChemSusChem; 2016 May; 9(9):932-7. PubMed ID: 27059168 [TBL] [Abstract][Full Text] [Related]
53. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Liang Q; Ye L; Huang ZH; Xu Q; Bai Y; Kang F; Yang QH Nanoscale; 2014 Nov; 6(22):13831-7. PubMed ID: 25300494 [TBL] [Abstract][Full Text] [Related]
54. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors. Liu C; Wang J; Li J; Luo R; Shen J; Sun X; Han W; Wang L ACS Appl Mater Interfaces; 2015 Aug; 7(33):18609-17. PubMed ID: 26243663 [TBL] [Abstract][Full Text] [Related]
55. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. Yan J; Wang Q; Wei T; Jiang L; Zhang M; Jing X; Fan Z ACS Nano; 2014 May; 8(5):4720-9. PubMed ID: 24730514 [TBL] [Abstract][Full Text] [Related]
56. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes. Zhong H; Xu F; Li Z; Fu R; Wu D Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802 [TBL] [Abstract][Full Text] [Related]
57. Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Tang H; Yang C; Lin Z; Yang Q; Kang F; Wong CP Nanoscale; 2015 May; 7(20):9133-9. PubMed ID: 25896639 [TBL] [Abstract][Full Text] [Related]
58. Multiple-heteroatom doped porous carbons from self-activation of lignosulfonate with melamine for high performance supercapacitors. Li X; Zhang W; Wu M; Li S; Li X; Li Z Int J Biol Macromol; 2021 Jul; 183():950-961. PubMed ID: 33965494 [TBL] [Abstract][Full Text] [Related]
59. Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. Ruiz-Rosas R; Valero-Romero MJ; Salinas-Torres D; Rodríguez-Mirasol J; Cordero T; Morallón E; Cazorla-Amorós D ChemSusChem; 2014 May; 7(5):1458-67. PubMed ID: 24678067 [TBL] [Abstract][Full Text] [Related]
60. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. Long C; Wei T; Yan J; Jiang L; Fan Z ACS Nano; 2013 Dec; 7(12):11325-32. PubMed ID: 24245580 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]