These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 23606587)
1. Triggering and monitoring plasmon-enhanced reactions by optical nanoantennas coupled to photocatalytic beads. Salmistraro M; Schwartzberg A; Bao W; Depero LE; Weber-Bargioni A; Cabrini S; Alessandri I Small; 2013 Oct; 9(19):3301-7. PubMed ID: 23606587 [TBL] [Abstract][Full Text] [Related]
2. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
3. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Awazu K; Fujimaki M; Rockstuhl C; Tominaga J; Murakami H; Ohki Y; Yoshida N; Watanabe T J Am Chem Soc; 2008 Feb; 130(5):1676-80. PubMed ID: 18189392 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916 [TBL] [Abstract][Full Text] [Related]
5. High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water. Zhang J; Wang P; Sun J; Jin Y ACS Appl Mater Interfaces; 2014 Nov; 6(22):19905-13. PubMed ID: 25369420 [TBL] [Abstract][Full Text] [Related]
6. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites. Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374 [TBL] [Abstract][Full Text] [Related]
7. Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles. Zhang X; Zhu Y; Yang X; Wang S; Shen J; Lin B; Li C Nanoscale; 2013 Apr; 5(8):3359-66. PubMed ID: 23467326 [TBL] [Abstract][Full Text] [Related]
8. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Zhang N; Liu S; Xu YJ Nanoscale; 2012 Apr; 4(7):2227-38. PubMed ID: 22362188 [TBL] [Abstract][Full Text] [Related]
9. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation. Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997 [TBL] [Abstract][Full Text] [Related]
10. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556 [TBL] [Abstract][Full Text] [Related]
11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724 [TBL] [Abstract][Full Text] [Related]
14. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Kochuveedu ST; Jang YH; Kim DH Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494 [TBL] [Abstract][Full Text] [Related]
16. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays. Wang B; Zou Y; Lu H; Kong W; Singh SC; Zhao C; Yao C; Xing J; Zheng X; Yu Z; Tong C; Xin W; Yu W; Zhao B; Guo C Small; 2020 Jun; 16(24):e2001417. PubMed ID: 32407005 [TBL] [Abstract][Full Text] [Related]
17. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Linic S; Christopher P; Xin H; Marimuthu A Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539 [TBL] [Abstract][Full Text] [Related]
18. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials. Savaliya PB; Thomas A; Dua R; Dhawan A Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327 [TBL] [Abstract][Full Text] [Related]
19. Oxygen defect-induced localized surface plasmon resonance at the WO Wei W; Yao Y; Zhao Q; Xu Z; Wang Q; Zhang Z; Gao Y Nanoscale; 2019 Mar; 11(12):5535-5547. PubMed ID: 30860537 [TBL] [Abstract][Full Text] [Related]