BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23606651)

  • 1. Development of a colorimetric and a fluorescence phosphatase-inhibitor assay suitable for drug discovery approaches.
    Sotoud H; Gribbon P; Ellinger B; Reinshagen J; Boknik P; Kattner L; El-Armouche A; Eschenhagen T
    J Biomol Screen; 2013 Sep; 18(8):899-909. PubMed ID: 23606651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening.
    Takemiya A; Yamauchi S; Yano T; Ariyoshi C; Shimazaki K
    Plant Cell Physiol; 2013 Jan; 54(1):24-35. PubMed ID: 22585556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interaction between nuclear inhibitor of protein phosphatase type 1 (NIPP1) and protein phosphatase type 1 (PP1) in Drosophila: consequences of over-expression of NIPP1 in flies and suppression by co-expression of PP1.
    Parker L; Gross S; Beullens M; Bollen M; Bennett D; Alphey L
    Biochem J; 2002 Dec; 368(Pt 3):789-97. PubMed ID: 12358598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylated Peptide Derived from the Myosin Phosphatase Target Subunit Is a Novel Inhibitor of Protein Phosphatase-1.
    Kónya Z; Tamás I; Bécsi B; Lontay B; Raics M; Timári I; Kövér KE; Erdődi F
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of phosphatase inhibitor-1 peptides acting as indirect activators of phosphatase 1.
    Sotoud H; Borgmeyer U; Schulze C; El-Armouche A; Eschenhagen T
    Naunyn Schmiedebergs Arch Pharmacol; 2015 Mar; 388(3):283-93. PubMed ID: 25416155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Ultra-High-Throughput Screen for Catalytic Inhibitors of Serine/Threonine Protein Phosphatases Types 1 and 5 (PP1C and PP5C).
    Swingle M; Volmar CH; Saldanha SA; Chase P; Eberhart C; Salter EA; D'Arcy B; Schroeder CE; Golden JE; Wierzbicki A; Hodder P; Honkanen RE
    SLAS Discov; 2017 Jan; 22(1):21-31. PubMed ID: 27628691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aralkyl selenoglycosides and related selenosugars in acetylated form activate protein phosphatase-1 and -2A.
    Kónya Z; Bécsi B; Kiss A; Tamás I; Lontay B; Szilágyi L; Kövér KE; Erdődi F
    Bioorg Med Chem; 2018 May; 26(8):1875-1884. PubMed ID: 29501414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PNUTS (phosphatase nuclear targeting subunit) inhibits retinoblastoma-directed PP1 activity.
    Udho E; Tedesco VC; Zygmunt A; Krucher NA
    Biochem Biophys Res Commun; 2002 Sep; 297(3):463-7. PubMed ID: 12270115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1.
    Egloff MP; Johnson DF; Moorhead G; Cohen PT; Cohen P; Barford D
    EMBO J; 1997 Apr; 16(8):1876-87. PubMed ID: 9155014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions and properties of smooth muscle myosin phosphatase.
    Ichikawa K; Hirano K; Ito M; Tanaka J; Nakano T; Hartshorne DJ
    Biochemistry; 1996 May; 35(20):6313-20. PubMed ID: 8639575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel phosphatidic acid binding domain in protein phosphatase-1.
    Jones JA; Rawles R; Hannun YA
    Biochemistry; 2005 Oct; 44(40):13235-45. PubMed ID: 16201749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosophila.
    Bennett D; Lyulcheva E; Alphey L; Hawcroft G
    J Mol Biol; 2006 Nov; 364(2):196-212. PubMed ID: 17007873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein phosphatase 1--targeted in many directions.
    Cohen PT
    J Cell Sci; 2002 Jan; 115(Pt 2):241-56. PubMed ID: 11839776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical models of catalytic domains of protein phosphatases 1 and 2A with Zn2+ and Mn2+ metal dications and putative bioligands in their catalytic centers.
    Woźniak-Celmer E; Ołdziej S; Ciarkowski J
    Acta Biochim Pol; 2001; 48(1):35-52. PubMed ID: 11440182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high-throughput robotic fluorescence-based assay for HsEg5 inhibitor screening.
    Zhang B; Senator D; Wilson CJ; Ng SC
    Anal Biochem; 2005 Oct; 345(2):326-35. PubMed ID: 16125662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for protein phosphatase 1 recruitment by glycogen-targeting subunits.
    Yu J; Deng T; Xiang S
    FEBS J; 2018 Dec; 285(24):4646-4659. PubMed ID: 30422398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-throughput, nonisotopic, competitive binding assay for kinases using nonselective inhibitor probes (ED-NSIP).
    Vainshtein I; Silveria S; Kaul P; Rouhani R; Eglen RM; Wang J
    J Biomol Screen; 2002 Dec; 7(6):507-14. PubMed ID: 14599348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and domain mapping of Dictyostelium discoideum type-1 protein phosphatase inhibitor-2.
    Sousa-Canavez JM; Beton D; Gonzalez-Kristeller DC; da Silva AM
    Biochimie; 2007 May; 89(5):692-701. PubMed ID: 17336445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a highly sensitive, high-throughput assay for glycosyltransferases using enzyme-coupled fluorescence detection.
    Kumagai K; Kojima H; Okabe T; Nagano T
    Anal Biochem; 2014 Feb; 447():146-55. PubMed ID: 24299989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colorimetric assay optimization for high-throughput screening of dihydroorotase by detecting ureido groups.
    Rice AJ; Truong L; Johnson ME; Lee H
    Anal Biochem; 2013 Oct; 441(1):87-94. PubMed ID: 23769705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.