These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23607372)

  • 1. Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule.
    Kurz V; Nelson EM; Shim J; Timp G
    ACS Nano; 2013 May; 7(5):4057-69. PubMed ID: 23607372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer capture by electro-osmotic flow of oppositely charged nanopores.
    Wong CT; Muthukumar M
    J Chem Phys; 2007 Apr; 126(16):164903. PubMed ID: 17477630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusional motion of a particle translocating through a nanopore.
    Lan WJ; White HS
    ACS Nano; 2012 Feb; 6(2):1757-65. PubMed ID: 22211585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores.
    Chen K; Bell NAW; Kong J; Tian Y; Keyser UF
    Biophys J; 2017 Feb; 112(4):674-682. PubMed ID: 28256227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation of DNA molecules through nanopores with salt gradients: the role of osmotic flow.
    Hatlo MM; Panja D; van Roij R
    Phys Rev Lett; 2011 Aug; 107(6):068101. PubMed ID: 21902370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size effects of pore density and solute size on water osmosis through nanoporous membrane.
    Zhao K; Wu H
    J Phys Chem B; 2012 Nov; 116(45):13459-66. PubMed ID: 23116121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.
    Belkin M; Aksimentiev A
    ACS Appl Mater Interfaces; 2016 May; 8(20):12599-608. PubMed ID: 26963065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography.
    Nelson EM; Li H; Timp G
    ACS Nano; 2014 Jun; 8(6):5484-93. PubMed ID: 24840912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and electrical characterization of a pore-cavity-pore device.
    Pedone D; Langecker M; Münzer AM; Wei R; Nagel RD; Rant U
    J Phys Condens Matter; 2010 Nov; 22(45):454115. PubMed ID: 21339602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-osmotic flow through nanopores in thin and ultrathin membranes.
    Melnikov DV; Hulings ZK; Gracheva ME
    Phys Rev E; 2017 Jun; 95(6-1):063105. PubMed ID: 28709345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoting single-file DNA translocations through nanopores using electro-osmotic flow.
    Ermann N; Hanikel N; Wang V; Chen K; Weckman NE; Keyser UF
    J Chem Phys; 2018 Oct; 149(16):163311. PubMed ID: 30384733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA motion induced by electrokinetic flow near an Au coated nanopore surface as voltage controlled gate.
    Sugimoto M; Kato Y; Ishida K; Hyun C; Li J; Mitsui T
    Nanotechnology; 2015 Feb; 26(6):065502. PubMed ID: 25611963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium capture rates induce protein accumulation and enhanced adsorption to solid-state nanopores.
    Freedman KJ; Haq SR; Fletcher MR; Foley JP; Jemth P; Edel JB; Kim MJ
    ACS Nano; 2014 Dec; 8(12):12238-49. PubMed ID: 25426798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clog and Release, and Reverse Motions of DNA in a Nanopore.
    Kubota T; Lloyd K; Sakashita N; Minato S; Ishida K; Mitsui T
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores.
    Goyal G; Freedman KJ; Kim MJ
    Anal Chem; 2013 Sep; 85(17):8180-7. PubMed ID: 23885645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-osmotic flow in nanoconfinement: Solid-state and protein nanopores.
    Li M; Muthukumar M
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38411234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.