These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23607404)

  • 1. GPA-14, a Gα(i) subunit mediates dopaminergic behavioral plasticity in C. elegans.
    Mersha M; Formisano R; McDonald R; Pandey P; Tavernarakis N; Harbinder S
    Behav Brain Funct; 2013 Apr; 9():16. PubMed ID: 23607404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Caenorhabditis elegans D2-like dopamine receptor DOP-2 physically interacts with GPA-14, a Gαi subunit.
    Pandey P; Harbinder S
    J Mol Signal; 2012 Jan; 7(1):3. PubMed ID: 22280843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans.
    Sanyal S; Wintle RF; Kindt KS; Nuttley WM; Arvan R; Fitzmaurice P; Bigras E; Merz DC; Hébert TE; van der Kooy D; Schafer WR; Culotti JG; Van Tol HH
    EMBO J; 2004 Jan; 23(2):473-82. PubMed ID: 14739932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans.
    Wang D; Yu Y; Li Y; Wang Y; Wang D
    PLoS One; 2014; 9(12):e115985. PubMed ID: 25536037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol.
    Ezak MJ; Ferkey DM
    PLoS One; 2010 Mar; 5(3):e9487. PubMed ID: 20209143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans.
    Chase DL; Pepper JS; Koelle MR
    Nat Neurosci; 2004 Oct; 7(10):1096-103. PubMed ID: 15378064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans.
    Pandey P; Singh A; Kaur H; Ghosh-Roy A; Babu K
    PLoS Genet; 2021 Feb; 17(2):e1009346. PubMed ID: 33524034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine signaling tunes spatial pattern selectivity in C. elegans.
    Han B; Dong Y; Zhang L; Liu Y; Rabinowitch I; Bai J
    Elife; 2017 Mar; 6():. PubMed ID: 28349862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of dopamine-dependent behaviors by the Caenorhabditis elegans Olig homolog HLH-17.
    Felton CM; Johnson CM
    J Neurosci Res; 2011 Oct; 89(10):1627-36. PubMed ID: 21688290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans.
    Krum BN; Martins AC; Queirós L; Ferrer B; Milne GL; Soares FAA; Fachinetto R; Aschner M
    Mol Neurobiol; 2021 Jan; 58(1):304-316. PubMed ID: 32935232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine signaling is essential for precise rates of locomotion by C. elegans.
    Omura DT; Clark DA; Samuel AD; Horvitz HR
    PLoS One; 2012; 7(6):e38649. PubMed ID: 22719914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation.
    Correa PA; Gruninger T; García LR
    J Neurosci; 2015 Jul; 35(27):9990-10004. PubMed ID: 26156999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reserpine requires the D2-type receptor,
    Saharia K; Kumar R; Gupta K; Mishra S; Subramaniam JR
    J Biosci; 2016 Dec; 41(4):689-695. PubMed ID: 27966489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans.
    Allen AT; Maher KN; Wani KA; Betts KE; Chase DL
    Genetics; 2011 Jul; 188(3):579-90. PubMed ID: 21515580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans.
    Kindt KS; Quast KB; Giles AC; De S; Hendrey D; Nicastro I; Rankin CH; Schafer WR
    Neuron; 2007 Aug; 55(4):662-76. PubMed ID: 17698017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraspanin (TSP-17) protects dopaminergic neurons against 6-OHDA-induced neurodegeneration in C. elegans.
    Masoudi N; Ibanez-Cruceyra P; Offenburger SL; Holmes A; Gartner A
    PLoS Genet; 2014 Dec; 10(12):e1004767. PubMed ID: 25474638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans.
    Rose JK; Sangha S; Rai S; Norman KR; Rankin CH
    J Neurosci; 2005 Aug; 25(31):7159-68. PubMed ID: 16079398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal Gα subunits required for the control of response to polystyrene nanoparticles in the range of μg/L in C. elegans.
    Yang Y; Wu Q; Wang D
    Ecotoxicol Environ Saf; 2021 Dec; 225():112732. PubMed ID: 34478982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans.
    Sugiura M; Fuke S; Suo S; Sasagawa N; Van Tol HH; Ishiura S
    J Neurochem; 2005 Aug; 94(4):1146-57. PubMed ID: 16001968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15.
    Sellings L; Pereira S; Qian C; Dixon-McDougall T; Nowak C; Zhao B; Tyndale RF; van der Kooy D
    Eur J Neurosci; 2013 Mar; 37(5):743-56. PubMed ID: 23351035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.