These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 23607457)

  • 1. Binding of glycated ovocystatin to rat renal brush border membranes.
    Golab K; Gburek J; Konopska B; Krotkiewski H; Warwas M
    Anim Sci J; 2013 Oct; 84(10):702-7. PubMed ID: 23607457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of aminoglycoside antibiotics on chicken cystatin binding to renal brush-border membranes.
    Konopska B; Gburek J; Gołąb K; Warwas M
    J Pharm Pharmacol; 2013 Jul; 65(7):988-94. PubMed ID: 23738726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of chicken cystatin binding to rat renal brush-border membranes.
    Konopska B; Gburek J; Gołab K; Warwas M
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Apr; 146(4):482-8. PubMed ID: 17275377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glycation of albumin on its binding to renal brush-border membrane vesicles: influence of aging in rats.
    Verbeke P; Perichon M; Schaeverbeke J; Bakala H
    Biochim Biophys Acta; 1996 Jun; 1282(1):93-100. PubMed ID: 8679665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of dipeptide transport in rat renal brush border membranes: studies with glycylsarcosine.
    Tiruppathi C; Ganapathy V; Leibach FH
    Pediatr Res; 1987 Dec; 22(6):641-6. PubMed ID: 2829104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the ezrin binding epitope for advanced glycation endproducts.
    McRobert EA; Tikoo A; Cooper ME; Bach LA
    Int J Biochem Cell Biol; 2008; 40(8):1570-80. PubMed ID: 18203644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanine nucleotides protect Rho proteins from endogenous proteolytic degradation in renal membranes.
    Desrosiers RR; Gauthier F; Lin W; Béliveau R
    Biochem Cell Biol; 1998; 76(1):63-72. PubMed ID: 9666307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin.
    Gburek J; Birn H; Verroust PJ; Goj B; Jacobsen C; Moestrup SK; Willnow TE; Christensen EI
    Am J Physiol Renal Physiol; 2003 Sep; 285(3):F451-8. PubMed ID: 12724130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin binding sites on renal brush-border membranes.
    Gburek J; Osada J
    Biochimie; 2000 Dec; 82(12):1135-42. PubMed ID: 11120356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal proteins of the rat kidney proximal tubule brush border.
    Rodman JS; Mooseker M; Farquhar MG
    Eur J Cell Biol; 1986 Dec; 42(2):319-27. PubMed ID: 3545840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes.
    Takahashi K; Nakamura N; Terada T; Okano T; Futami T; Saito H; Inui KI
    J Pharmacol Exp Ther; 1998 Aug; 286(2):1037-42. PubMed ID: 9694966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Rho protein binding to membranes by rhoGDI: inhibition of releasing activity by physiological ionic conditions.
    Bilodeau D; Lamy S; Desrosiers RR; Gingras D; Béliveau R
    Biochem Cell Biol; 1999; 77(1):59-69. PubMed ID: 10426287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-chain binding sites on renal brush-border membranes.
    Batuman V; Dreisbach AW; Cyran J
    Am J Physiol; 1990 May; 258(5 Pt 2):F1259-65. PubMed ID: 2110777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced glycation end products and their receptors co-localise in rat organs susceptible to diabetic microvascular injury.
    Soulis T; Thallas V; Youssef S; Gilbert RE; McWilliam BG; Murray-McIntosh RP; Cooper ME
    Diabetologia; 1997 Jun; 40(6):619-28. PubMed ID: 9222639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycated proteome: from reaction to intervention.
    Kulkarni MJ; Korwar AM; Mary S; Bhonsle HS; Giri AP
    Proteomics Clin Appl; 2013 Jan; 7(1-2):155-70. PubMed ID: 23184864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin.
    Li JM; Che CT; Lau CB; Leung PS; Cheng CH
    Int J Biochem Cell Biol; 2006; 38(5-6):985-95. PubMed ID: 16289850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of proximal tubular metabolism of advanced glycation end products in kidney diseases.
    Saito A; Takeda T; Sato K; Hama H; Tanuma A; Kaseda R; Suzuki Y; Gejyo F
    Ann N Y Acad Sci; 2005 Jun; 1043():637-43. PubMed ID: 16037287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression of receptor for advanced glycosylation end products and its modulation by aminoguanidine in diabetic kidney tissue.
    Huang Y; Lin S; Zhou J
    Chin Med J (Engl); 1998 Aug; 111(8):698-704. PubMed ID: 11245022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal brush border membrane vesicle aminoglycoside binding and nephrotoxicity.
    Todd JH; Hottendorf GH
    J Pharmacol Exp Ther; 1995 Jul; 274(1):258-63. PubMed ID: 7616406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.