These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23607616)

  • 1. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode.
    Liang B; Cheng HY; Kong DY; Gao SH; Sun F; Cui D; Kong FY; Zhou AJ; Liu WZ; Ren NQ; Wu WM; Wang AJ; Lee DJ
    Environ Sci Technol; 2013 May; 47(10):5353-61. PubMed ID: 23607616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode.
    Sun F; Liu H; Liang B; Song R; Yan Q; Wang A
    Bioresour Technol; 2013 Sep; 143():699-702. PubMed ID: 23849757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Reductive degradation of chloramphenicol in bioelectrochemical system].
    Sun F; Wang A; Yan Q; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2013 Feb; 29(2):161-8. PubMed ID: 23697161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system.
    Kong D; Liang B; Lee DJ; Wang A; Ren N
    J Environ Sci (China); 2014 Aug; 26(8):1689-97. PubMed ID: 25108725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES).
    Liu H; Yan Q; Shen W
    Bioresour Technol; 2014 Nov; 171():187-92. PubMed ID: 25194913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bioanode and Inversion of Bioanode to Biocathode for the Degradation of Antibiotic Chloramphenicol].
    Kong DY; Liang B; Yun H; Wang AJ; Ren NQ
    Huan Jing Ke Xue; 2015 Apr; 36(4):1352-8. PubMed ID: 26164911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of anodic bacterial community to the polarity inversion for chloramphenicol reduction.
    Yun H; Kong D; Liang B; Cui M; Li Z; Wang A
    Bioresour Technol; 2016 Dec; 221():666-670. PubMed ID: 27664010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological reduction and hydrodechlorination of chlorinated nitroaromatic antibiotic chloramphenicol under H
    Yang L; Pang S; Zhou J; Li X; Yao M; Xia S
    Bioresour Technol; 2023 May; 376():128881. PubMed ID: 36921636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria.
    Kong F; Wang A; Ren HY; Huang L; Xu M; Tao H
    Bioresour Technol; 2014 Apr; 158():32-8. PubMed ID: 24583212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Fluxes in Biocathode Bioelectrochemical Systems Performing Dechlorination of Chlorinated Aliphatic Hydrocarbons.
    Chen F; Li Z; Yang J; Liang B; Huang C; Cai W; Nan J; Wang A
    Front Microbiol; 2018; 9():2306. PubMed ID: 30323798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ fabrication of gold nanoparticles into biocathodes enhance chloramphenicol removal.
    Xu H; Sheng Y; Liu Q; Li C; Tang Q; Li Z; Wang W
    Bioelectrochemistry; 2022 Apr; 144():108006. PubMed ID: 34871846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation.
    Liang B; Ma J; Cai W; Li Z; Liu W; Qi M; Zhao Y; Ma X; Deng Y; Wang A; Zhou J
    Water Res; 2019 Jan; 148():398-406. PubMed ID: 30399554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants.
    Yun H; Liang B; Kong DY; Cheng HY; Li ZL; Gu YB; Yin HQ; Wang AJ
    J Hazard Mater; 2017 Jun; 331():280-288. PubMed ID: 28273578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode.
    Wang AJ; Cheng HY; Liang B; Ren NQ; Cui D; Lin N; Kim BH; Rabaey K
    Environ Sci Technol; 2011 Dec; 45(23):10186-93. PubMed ID: 21985580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment.
    Kong F; Wang A; Cheng H; Liang B
    Bioresour Technol; 2014 Jan; 151():332-9. PubMed ID: 24262842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose and Applied Voltage Accelerated
    Wang X; Xing D; Mei X; Liu B; Ren N
    Front Microbiol; 2018; 9():580. PubMed ID: 29636747
    [No Abstract]   [Full Text] [Related]  

  • 17. Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification.
    Liang B; Kong D; Ma J; Wen C; Yuan T; Lee DJ; Zhou J; Wang A
    Water Res; 2016 Sep; 100():157-168. PubMed ID: 27183211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of diclofenac via sequential reduction-oxidation by Ru/Fe modified biocathode dual-chamber bioelectrochemical system: Performance, pathways and degradation mechanisms.
    Qiu B; Hu Y; Tang C; Chen Y; Cheng J
    Chemosphere; 2022 Mar; 291(Pt 2):132881. PubMed ID: 34774907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials.
    Kong F; Wang A; Ren HY
    Bioresour Technol; 2014 Aug; 166():252-8. PubMed ID: 24926596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.